Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5-3(2x+1)^2
Ta có : (2x+1)^2\(\ge\)0
\(\Rightarrow\)-3(2x-1)^2\(\le\)0
\(\Rightarrow\)5+(-3(2x-1)^2)\(\le\)5
Dấu = xảy ra khi : (2x-1)^2=0
=> 2x-1=0 =>x=\(\frac{1}{2}\)
Vậy : A=5 tại x=\(\frac{1}{2}\)
Ta có : (x-1)^2 \(\ge\)0
=> 2(x-1)^2\(\ge\)0
=>2(x-1)^2+3 \(\ge\)3
=>\(\frac{1}{2\left(x-1\right)^2+3}\)\(\le\)\(\frac{1}{3}\)
Dấu = xảy ra khi : (x-1)^2 =0
=> x = 1
Vậy : B = \(\frac{1}{3}\)khi x = 1
\(\frac{x^2+8}{x^2+2}\)= \(\frac{x^2+2+6}{x^2+2}=1+\frac{6}{x^2+2}\)
Làm như câu B GTNN = 4 khi x =0
k vs nha
Ta có : \(|2x^2+|x-5||=2x^2+5\)
mà \(2x^2\ge0\forall x\Rightarrow2x^2+5\ge5\)
\(\Rightarrow|2x^2+|x+5||\ge5\)
\(\Rightarrow\orbr{\begin{cases}2x^2+|x+5|\ge5\\2x^2+|x+5|\le-5\end{cases}}\)
Nhưng \(2x^2\ge0\forall x,|x+5|\ge0\forall x\)\(\Rightarrow2x^2+|x+5|\ge0\forall x\)
\(\Rightarrow2x^2+|x-5|\ge5\)
\(\Rightarrow|2x^2+|x-5||=2x^2+|x-5|=2x^2+5\)
\(\Rightarrow|x-5|=5\)
\(\Rightarrow\orbr{\begin{cases}x-5=5\\x-5=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=10\\x=0\end{cases}}\)
Vậy \(x=10\)hoặc \(x=0\)
Bài 2 :
a,\(\frac{x-1}{3}=2-\frac{x}{-2}\)
\(\Leftrightarrow\frac{x-1}{3}=\frac{-4-x}{-2}\Leftrightarrow-2x+2=-12-3x\Leftrightarrow x=-14\)
b, \(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow7x-7=6x+30\Leftrightarrow x=37\)
c, \(\frac{2x-1}{4}=\frac{4}{2x-1}\Leftrightarrow\left(2x-1\right)^2=16\)
\(\Leftrightarrow\left(2x-1\right)^2-4^2=0\Leftrightarrow\left(2x-5\right)\left(2x+3\right)=0\Leftrightarrow x=\frac{5}{2};-\frac{3}{2}\)
a)A=\(x^5-\dfrac{1}{2}x+7x^3-2x+\dfrac{1}{5}x^3+3x^4-x^5+\dfrac{2}{5}x^4+15\)
=\(=\dfrac{-5}{2}x+\dfrac{36}{5}x^3+\dfrac{17}{5}x^4+15\)
b)B=\(3x^2-10+\dfrac{2}{5}x^3+7x-x^2+8+7x^2\)
\(=9x^2+\dfrac{2}{5}x^3+7x+2\)
c)C=\(\dfrac{1}{7}x-2x^4+5x+6\)
1) a.Từ\(\frac{x}{y}=\frac{11}{7}\Rightarrow\frac{x}{11}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x-y}{11-7}=\frac{12}{4}=3\)
\(\Rightarrow x=3.11=33;y=3.7=21\)
b) \(\sqrt{2x-3}=5\)
\(2x-3=25\)
\(2x=28\)
\(x=14\)
2) a) \(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2+\sqrt{4}=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}+2\)
\(=\frac{3}{2}-\frac{10}{3}+2\)
\(=\frac{1}{6}\)
_Học tốt nha_
1. a, \(\frac{x}{y}=\frac{11}{7}\)và x-y=12
\(\Rightarrow\frac{x}{11}=\frac{y}{7}\)và x-y=12
Áp dung tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{11}=\frac{y}{7}=\frac{x-y}{11-7}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{11}=3\\\frac{y}{7}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=33\\y=21\end{cases}}\)
Vậy
b,\(\sqrt{2x-3}\)=5
\(\Rightarrow2x-3=25\)
\(\Rightarrow2x=28\)
\(\Rightarrow x=14\)
c,\(\frac{3}{2}-\frac{5}{6}:\left(\frac{1}{2}\right)^2+\sqrt{4}\)
\(=\frac{3}{2}-\frac{5}{6}:\frac{1}{4}+2\)
\(=\frac{3}{2}-\frac{10}{3}+2\)
\(=\frac{9}{6}-\frac{20}{6}+2\)
\(=\frac{-11}{6}+2\)
\(=\frac{1}{6}\)
a)\(\frac{x+3}{x+5}=7\Leftrightarrow x+3=7\left(x+5\right)\)
\(\Leftrightarrow x+3=7x+35\)
\(\Leftrightarrow-6x=32\)
\(\Leftrightarrow x=-\frac{16}{3}\)
b)\(\frac{2x-1}{3x+5}=-\frac{2}{3}\)
\(\Leftrightarrow3\left(2x-1\right)=-2\left(3x+5\right)\)
\(\Leftrightarrow6x-3=-6x-10\)
\(\Leftrightarrow12x=-7\)
\(\Leftrightarrow x=-\frac{7}{12}\)
c)\(\frac{x+1}{4}=\frac{9}{x+1}\Leftrightarrow\left(x+1\right)^2=36\)
\(\Leftrightarrow\left(x+1\right)^2=6^2\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=6\\x+1=-6\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-7\end{cases}}}\)
d)\(\frac{6x-1}{2x+3}=\frac{3x}{x+2}\)
\(\Leftrightarrow\left(6x-1\right)\left(x+2\right)=3x\left(2x+3\right)\)
\(\Leftrightarrow6x^2+12x-x-2=6x^2+9x\)
\(\Leftrightarrow2x=2\Leftrightarrow x=1\)
\(a,\left|3x-1\right|=\left|5-2x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=5-2x\\3x-1=2x-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x=6\\x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{6}{5}\\x=-4\end{cases}}\)
b,\(\left|2x-1\right|+x=2\)
\(\Leftrightarrow\left|2x-1\right|=2-x\)
Điều kiện \(2-x\ge0\Leftrightarrow x\le2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=2-x\\2x-1=x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=3\\x=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(\text{nhận}\right)\\x=-1\left(\text{nhận}\right)\end{cases}}}\)
c.\(A=0,75-\left|x-3,2\right|\)
Vì \(\left|x-3,2\right|\ge0\Rightarrow0,75-\left|x-3,2\right|\le0,75\)
Dấu "=' xảy ra \(\Leftrightarrow x-3,2=0\Leftrightarrow x=3,2\)
Vậy Max A = 0,75 khi x = 3,2
\(d,B=2.\left|x+1,5\right|-3,2\)
Vì 2. |x + 1,5| ≥ 0 => B ≥ -3,2
Dấu " = ' xảy ra khi \(2\left|x+1,5\right|=0\)
\(\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\)
Vậy Min B = -3,2 khi x = -1,5
a) \(A=x^3+2x^2+7x-4-x-x^3-2x^2+1\)
\(A=\left(x^3-x^3\right)+\left(2x^2-2x^2\right)+\left(7x-x\right)+\left(-4+1\right)\)
\(A=6x-3\)
b) Thay x = (-5)
\(\Rightarrow A=6.\left(-5\right)-3\)
\(\Rightarrow A=-30-3\)
\(\Rightarrow A=-33\)
c) \(A=6x-3\)
\(10=6x-3\)
\(13=6x\)
\(x=\frac{13}{6}\)
thank you bro