\(x^2y^2+1-x^2-y^2\)

b)\(x^3+3x^2-3x-1\)

c)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

a) ta có:

\(x^2y^2+1-x^2-y^2\)

\(=x^2\left(y^2-1\right)-\left(y^2-1\right)\)

\(=\left(y+1\right)\left(y-1\right)\left(x-1\right)\left(x+1\right)\)

b)  \(x^3+3x^2-3x-1=\left(x-1\right)\left(x^2+x+1\right)+3x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+4x+1\right)\)

c) tương tự b

27 tháng 3 2020
https://i.imgur.com/zwAtPMZ.jpg
2 tháng 3 2020
https://i.imgur.com/qz7eYvL.jpg
2 tháng 3 2020

a.\(\frac{1-3x}{2}-\frac{x+3}{2}=\frac{1-3x-x-3}{2}=\frac{1-4x-3}{2}=\frac{-4x-2}{2}=\frac{-2\left(2x+1\right)}{2}=-2x-1\)

b. \(\frac{2\left(x+y\right)\left(x-y\right)}{x}-\frac{-2y^2}{x}=\frac{2\left(x^2-y^2\right)+2y^2}{x}=\frac{2x^2-2y^2+2y^2}{x}=2x\)

c. \(\frac{3x+1}{x+y}-\frac{2x-3}{x+y}=\frac{3x+1-2x+3}{x+y}=\frac{x+4}{x+y}\)

d. \(\frac{xy}{2x-y}-\frac{x^2-1}{y-2x}=\frac{xy}{2x-y}-\frac{1-x^2}{2x-y}=\frac{xy-1+x^2}{2x-y}\)

e. \(\frac{4x-1}{3x^2y}-\frac{7x-1}{3x^2y}=\frac{4x-1-7x+1}{3x^2y}=\frac{-3x}{3x^2y}=\frac{-1}{xy}\)

28 tháng 3 2020
https://i.imgur.com/VG57ZF2.jpg
28 tháng 3 2020
https://i.imgur.com/RVF6CXo.jpg

b: \(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x-y\right)^3+3xy\left(x-y\right)\right]\)

\(=3\left(1-2xy\right)-2\left(1+3xy\right)\)

\(=3-6xy-2-6xy=-12xy+1\)

c: \(=\left(x+y\right)^3-3\left(x^2+y^2+2xy\right)+3\left(x+y\right)+2012\)

\(=101^2-3\cdot101^2+3\cdot101+2012\)

=1002013

7 tháng 7 2017

g. \(x^{^3}+3x^2+3x+1-27z^3\\ =\left(x^{^3}+3x^2+3x+1\right)-27z^3\\ =\left(x+1\right)^3-27z^3\\ =\left(x+1-3\right)\left[\left(x+1\right)^2+\left(x+1\right)3z+9z^2\right]\\ =\left(x-2\right)\left(x+2x+1+3zx+3z+9z^2\right)\\ =\left(x-2\right)\left(3x+3zx+3z+9z^2+1\right)\left(x-2\right)3x\left(1+z\right)+3z\left(1+z\right)+1\\ =\left(x-2\right)\left(1+z\right)\left(3x+3z\right)+1\\ =\left(x-2\right)\left(1-z\right)3\left(x+z\right)+1\)

8 tháng 7 2017

Mk lm hơi tắt, bn chú ý nha:

a,\(x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)\)

=\(\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

=\(\left(x+1\right)^2\left(x^2-x+1\right)\)

b,\(\left(x^4-x^3\right)-\left(x^2-1\right)\)

=\(x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

= \(\left(x-1\right)\left(x^3-x-1\right)\)

c,Đề phải thế này nha:

\(x^2y-xy^2-x+y\)=\(xy\left(x-y\right)-\left(x-y\right)\)

=\(\left(x-y\right)\left(xy-1\right)\)

d,hình như đề sai đó bn, thế này đúng ko?

\(a^2x+a^2y-7x-7y\)=\(a^2\left(x+y\right)-7\left(x+y\right)\)=\(\left(x+y\right)\left(a^2-7\right)\)

e,\(4x^2-x^2-16y^2+4y^2\)

=\((4x^2-16y^2)-\left(x^2-4y^2\right)\)

=\(4\left(x-2y\right)\left(x+2y\right)-\left(x^2-2y\right)\left(x^2+2y\right)\)=\(3\left(x-2y\right)\left(x+2y\right)\)

Cách này nhanh hơn:\(3\left(x^2-4y^2\right)\)

=\(3\left(x-2y\right)\left(x+2y\right)\)

g,\(\left(x+1\right)^3-\left(3z\right)^3\)=

\(\left(x-3z+1\right)[\left(x+1\right)^2+3z\left(x+1\right)+9z^2]\)Nếu thấy đề bn đưa sai thì nhắc mk nhé?

Mong các bn giúp đỡ thêm

Chúc các bn hc tốtbanh

15 tháng 11 2017

2)

a) \(\dfrac{1}{x}.\dfrac{6x}{y}\)

\(=\dfrac{6x}{xy}\)

\(=\dfrac{6}{y}\)

b) \(\dfrac{2x^2}{y}.3xy^2\)

\(=\dfrac{2x^2.3xy^2}{y}\)

\(=\dfrac{6x^3y^2}{y}\)

\(=6x^3y\)

c) \(\dfrac{15x}{7y^3}.\dfrac{2y^2}{x^2}\)

\(=\dfrac{15x.2y^2}{7y^3.x^2}\)

\(=\dfrac{30xy^2}{7x^2y^3}\)

\(=\dfrac{30}{7xy}\)

d) \(\dfrac{2x^2}{x-y}.\dfrac{y}{5x^3}\)

\(=\dfrac{2x^2.y}{\left(x-y\right).5x^3}\)

\(=\dfrac{2y}{5x\left(x-y\right)}\)

2 tháng 7 2017

a) \(25.\left(x-1\right)^2-16\left(x+y\right)^2\)

= \(\left(5x-5\right)^2-\left(4x+y\right)^2\)

= \(\left(5x-5-4x-y\right)\left(5x-5+4x+y\right)\)

= \(\left(x-y-5\right)\left(9x+y-5\right)\)

b) \(x^3+3x^2+3x+1-27z^3\)

= \(\left(x+1\right)^3-27z^3\)

= \(\left(x+1-3z\right)\left(x^2+x.3z+9z^2\right)\)

c) \(x^2-2xy+y^2-xz+yz\)

= \(\left(x-y\right)^2-z\left(x-y\right)\)

= \(\left(x-y\right)\left(x-y-z\right)\)

d) \(a^3x-ab+b-x\)

= \(x\left(a^3-1\right)-b\left(a-1\right)\)

= \(x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

= \(\left(a-1\right)\left(a^2x+ax+x-b\right)\)

f) \(x^2+2x-4y^2-4y\)

= \(x^2+2x+1-\left(4y^2+4y+1\right)\)

= \(\left(x+1\right)^2-\left(2y+1\right)^2\)

= \(\left(x+1-2y-1\right)\left(x+1+2y+1\right)\)

= \(\left(x-2y\right)\left(x+2y+2\right)\)

g) \(xy-4+2x-2y\)

= \(y\left(x-2\right)-2\left(x-2\right)\)

= \(\left(x-2\right)\left(y-2\right)\)

a: \(=\left(5x-5\right)^2-\left(4x-4y\right)^2\)

\(=\left(5x-5-4x+4y\right)\cdot\left(5x-5+4x-4y\right)\)

\(=\left(x+4y-5\right)\left(9x-4y-5\right)\)

b: \(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

c: \(=\left(x-y\right)^2-z\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y-z\right)\)

d: \(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\cdot\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left(a^2x+ax+1-b\right)\)