Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{xy}\le\frac{\left|x\right|+\left|y\right|}{2}\)
\(\Leftrightarrow\)\(\left|x\right|+\left|y\right|\ge2\sqrt{xy}\)
\(\Leftrightarrow\)\(x+y\ge2\sqrt{xy}\) ( vì \(x,y>0\) )
\(\Leftrightarrow\)\(x-2\sqrt{xy}+y=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) ( luôn đúng với mọi x, y )
Vậy \(\sqrt{xy}\le\frac{\left|x\right|+\left|y\right|}{2}\)
Chúc bạn học tốt ~
\(\left|x\right|\ge0\); \(\left|y\right|\ge0\) Áp dụng bất đặng thức Cauchy cho hai số không âm:
\(\left|x\right|+\left|y\right|\ge2\sqrt{\left|x\right|\left|y\right|}=2\sqrt{xy}\)Vì xy>0
Suy ra điều cần chứng minh
\(\Leftrightarrow x-1+x-2+x-3=2007\)
\(\Leftrightarrow3x-6=2007\)
\(\Leftrightarrow3x=2013\)
\(\Leftrightarrow x=671\)
( 3x - 6 ) . 3 = 81
3x - 6 = 81 : 3
3x - 6 = 27
3x = 27 + 6
3x = 33
x = 33 : 3
x = 11
Vậy x = 11
Bài 1 :
a , x = 675
b , x = 1764
c , x = 0
Bài 2 :
a , x = 3 , 2 , 1 , 0
b , x = 6 , 5 , 4 , 3 , 2 , 1 , 0
c , x = 3 , 4
Bài 1:Tìm x
a, x:5=27\(x\)5
x:5=135
x =135\(x\)5
x =675
b, x:7=36\(x\)7
x:7=252
x =252\(x\)7
x =1764
c,x\(x\)132=312 x (5-3-2)
x\(x\)132=312x0
x\(x\)132=0
x =0:132
x =0
Ta dùng hằng đẳng thức
(a^2 + b^2) - 2ab = a^2 - 2ab + b^2 = (a-b)^2.
Mà (a-b)^2 >= 0 nên ta suy ra a^2+b^2 >= 2ab.
Nhơ k nha
Đúng 100% đó
x + 2617 x 5 = 22219
x + 2617 = 22219 : 5
x + 2617 = 4443,8
x = 4443,8 - 2617
x = 1826,8
( x - 9587 ) : 8 = 1415
( x - 9587 ) = 1415 x 8
( x - 9587 ) = 11320
x = 11320 + 9587
x = 20907
x + 2617x 5 = 22219
x + 2617 = 22219 : 5
x + 2617 = 4443,8
x = 4443,8 - 2617
x = 1826,8
( x - 9587) : 8 = 1415
( x - 9587 ) = 1415 x 8
( x - 9587 ) = 11320
x = 11320 + 9587
x = 20907
Chúc bạn học tốt!