Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=5-8x-x^2=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\)
Vậy \(A_{max}=21\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
\(B=5x-3x^2=-3\left(x^2-\frac{5}{3}x\right)\)
\(=-3\left(x^2-\frac{5}{3}x+\frac{35}{36}-\frac{25}{36}\right)\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{25}{36}\right]\)
\(=-3\left[\left(x-\frac{5}{6}\right)^2\right]+\frac{25}{12}\le\frac{25}{12}\)
Vậy \(B_{min}=\frac{25}{12}\Leftrightarrow x-\frac{5}{6}=0\Leftrightarrow x=\frac{5}{6}\)
x2+5x+8
=x2+2.x.5/2+25/4+7/4
=(x+5/2)2+7/4 \(\ge\)7/4 ( vì (x+5/2)2\(\ge\)0 )
Dấu "=" xảy ra khi:
x+5/2=0
<=>x=-5/2
Vậy GTNN của x2+5x+8 là 7/4 tại x=-5/2
x(x-6)=x2-6x
=x2-6x+9-9
=(x-3)2-9\(\ge\)-9( vì (x-3)2\(\ge\)0 )
Dấu "=" xảy ra khi:
x-3=0
<=>x=3
Vậy GTNN của x(x-6) là -9 tại x=3
\(A=5x^2-25x+35+7y^8\)
\(=5\left(x^2-5x+7\right)+7y^8\)
\(=5\left(x^2-5x+\frac{25}{4}+\frac{3}{4}\right)+7y^8\)
\(=5\left[\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\right]+7y^8\)
\(=5\left(x-\frac{5}{2}\right)^2+\frac{15}{4}+7y^8\ge\frac{15}{4}\)
\(\Leftrightarrow x=\frac{5}{2};y=0\)
A= (4x2+8xy+4y2)+ (x2-2x+1)-1+(y2+2y+1)-1+2019= 4(x+y)2 + (x-1)2+(y+1)2+2017 \(\ge\)2017
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(x-1\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-y\\x=1\\y=-1\end{cases}}\)
Vậy MinA= 2017 khi x=1; y=-1
A=5+ (-x2+2x) +(-4y2-4y)= -(x2-2x+1)+1-(4y2+4y+1)+1+5=-(x-1)2-(2y+1)2 +7 \(\le\)7
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{1}{2}\end{cases}}\)
Vậy Max A bằng 7 khi x=1; y=-1/2
Câu 1:
\(M=x^2-3x+5\)
\(M=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{11}{4}\)
\(M=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)
Dấu = xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min M = 11/4 khi x=3/2
b)\(N=2x^2+3x\)
\(N=2\left(x^2+\frac{3}{2}x\right)\)
\(N=2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)-\frac{9}{8}\)
\(N=2\left(x+\frac{3}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu = xảy ra khi \(x+\frac{3}{4}=0\Rightarrow x=-\frac{3}{4}\)
Vậy MIn N = -9/8 khi x=-3/4
c)Tự làm nha
Ta có : x2 - 3x + 5
= x2 - 2.x.\(\frac{3}{2}\) + \(\frac{3}{2}^2\) + \(\frac{11}{4}\)
= \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\in R\)
Nên : \(\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\) \(\ge\frac{11}{4}\forall x\in R\)
Vậy GTNN của biểu thức là : \(\frac{11}{4}\) khi \(x=\frac{3}{2}\)
1. a . 3x2 - 6x = 0
\(\Leftrightarrow3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b. x3 - 13x = 0
\(\Leftrightarrow x\left(x^2-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{13}\end{cases}}\)
c. 5x ( x - 2001 ) - x + 2001 = 0
<=> 5x ( x - 2001 ) - ( x - 2001 ) = 0
\(\Leftrightarrow\left(5x-1\right)\left(x-2001\right)=0\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-2001=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2001\end{cases}}\)
\(A=\dfrac{x^2+5x+8}{5}\)
\(=\dfrac{\left(x^2+5x+\dfrac{25}{4}\right)+\dfrac{7}{4}}{5}\)
\(=\dfrac{\left(x+\dfrac{5}{2}\right)^2}{5}+\dfrac{7}{20}\)
Vì \(\dfrac{\left(x+\dfrac{5}{2}\right)^2}{5}\ge0,\text{∀x}\)
⇒ \(A\ge\dfrac{7}{20},\text{∀x}\)
Min \(A=\dfrac{7}{20}\)⇔\(x=-\dfrac{5}{2}\)
\(A=\dfrac{x^2+5x+8}{5}=\dfrac{\left(x^2+2.\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{7}{4}}{5}=\dfrac{\left(x+\dfrac{5}{2}\right)^2+\dfrac{7}{4}}{5}\ge\dfrac{\dfrac{7}{4}}{5}=\dfrac{7}{4}.\dfrac{1}{5}=\dfrac{7}{20}\)-GTNN của A là \(\dfrac{7}{20}\Leftrightarrow x+\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{-5}{2}\)