Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+4y^2-4xy=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Thay \(x=18;y=4\) ta được:
\(\left(x-2y\right)^4=\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)
b, \(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
Thay \(x=6;y=-8\) ta được:
\(\left(2x-y\right)^3=\left(2.6+8\right)^3=\left(12+8\right)^3=20^3=8000\)
c, \(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-6ab^2\)
\(=2a^3\)
Thay \(a=1;b=2008\) ta được:
\(2a^3=2.1^3=2\)
Ta có:
a) 6x2y - 3y2 - 2x2 + y = (6x2y - 2x2) - (3y2 - y) = 2x2(3y - 1) - y(3y - 1) = (2x2 - y)(3y - 1)
b) 2x2 + x - 4xy - 2y + 2x + 1 = (x2 + x) - (4xy + 2y) + (x2 + 2x + 1) = x(x + 1) - 2y(2x + 1) + (x + 1)2
= (x + x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1) - 2y(2x + 1) = (2x + 1)(x + 1 - 2y)
c) 16x2y - 4xy2 - 4x3 + x2y = 4xy(4x - y) - x2(4x - y) = (4xy - x2)(4x - y)
d) 4x2 - 20x + 25 - 36y2 = (2x - 5)2 - (6y)2 = (2x - 5 - 6y)(2x - 5 + 6y)
e) x2 - 4y2 + 6x - 4y + 8 = (x2 + 6x + 9) - (4y2 + 4y + 1) = (x + 3)2 - (2y + 1)2 = (x + 3 - 2y - 1)(x + 3 + 2y + 1) = (x + 2 - 2y)(x + 4 + 2y)
g) Ta có : x10 + x5 + 1
= (x10 - x) + (x5 - x2) + (x2 + x + 1)
= x(x9 - 1) + x2(x3 - 1) + (x2 + x + 1)
= x(x3 - 1)(x6 + x3 + 1) + x2(x3 - 1) + (x2 + x + 1)
= (x7 + x4 + x)(x - 1)(x2 + x + 1) + x2(x - 1)(x2 + x + 1) + (x2 + x + 1)
= (x2 + x + 1)(x8 - x7 + x 5 - x4 + x2 - x + x4 + x3 + x2 + 1)
= (x2 + x + 1)(x8 - x7 + x5 + x3 - x + 1)
h) TT trên (dài dòng ktl)
a) 49x2 - 70x + 25 = (7x)2 - 2.7.5x + 52 = (7x - 5)2 = (7.5 - 5)2 = 302 = 900
b) x3 + 12x2 + 48x + 64 = (x + 4)3 = (6 + 4)3 = 103 = 1000
c) 4x2 + 4xy + y2 = (2x + y)2 = (-6.2 + 2)2 = (-10)2 = 100
d) x3 - 6x2 + 12x - 8 = (x - 2)3 = (102 - 2)3 = 1003 = 1000000
a) \(x^2-4xy+4y^2\)
\(=x^2-2.x.2y+\left(2y\right)^2\)
\(=\left(x-2y\right)^2\)
Thay x = 18 ; y = 4 vào ta được
\(=\left(18-2.4\right)^2\)
\(=10^2=100\)
b) \(\left(2x+1\right)^2-2\left(1+2x\right)\left(1-2x\right)+\left(2x-1\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)
\(=\left[\left(2x+1\right)+\left(2x-1\right)\right]^2\)
\(=\left(2x+1+2x-1\right)^2\)
\(=\left(4x\right)^2\)
Thay x = 100 ta được
\(=\left(4.100\right)^2\)
\(=400^2=160000\)
a) ta có : \(x^2+4y^2-4xy=\left(x-2y\right)^2=\left(18-2.4\right)^2=100\)
b) ta có : \(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(1-2x\right)\)
\(=\left(2x+1\right)^2+\left(2x-1\right)^2+2\left(2x+1\right)\left(2x-1\right)\)
\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=16x^2=16\left(100\right)^2=160000\)
=x2-4xy+4y2
=(x-2y)2
Thay x=18;y=4 vào biểu thức
=(18-8)2
=102
=100
a) \(M=10x^2+6y+4y^2+4xy+2\)
\(=\left(10x^2+4xy+\dfrac{2}{5}y^2\right)+\left(\dfrac{18}{5}y^2+6y+\dfrac{5}{2}\right)-\dfrac{1}{2}\)
\(=10\left(x^2+\dfrac{2}{5}xy+\dfrac{1}{25}y^2\right)+\dfrac{18}{5}\left(y^2+\dfrac{5}{3}y+\dfrac{25}{36}\right)-\dfrac{1}{2}\)
\(=10\left(x+\dfrac{1}{5}y\right)^2+\dfrac{18}{5}\left(y+\dfrac{5}{6}\right)^2-\dfrac{1}{2}\ge-\dfrac{1}{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{5}y=0\\y+\dfrac{5}{6}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
b) \(H=-x^2+2xy-4y^2+2x+10y-8\)
\(=-x^2+2x\left(y+1\right)-\left(y^2+2y+1\right)-\left(3y^2-12y+7\right)\)
\(=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
c) \(K=2x^2+2xy-2x+2xy+y^2\)
bn xem lại cái đề nhé, sao lại có 2 lần 2xy
a, =[(x^2)^2+2x^2+1]-x^2
=(x^2+1)^2 - x^2
=(x^2+1-x^2)(x^2+1+2x^2)
=2x^2
d,4xy+3z-12y-xz
=(4xy-12y)+(3z-xz)
=4y(x-3)-z(x-3)
=(4y-z)(x-3)
\(A=x^2+4y^2-4xy\)
\(=\left(x-2y\right)^2\)
\(=\left[6-2.\left(-8\right)\right]^2\)
\(=24^2\)
\(=276\)
1)-x3+3x2-3x+1 tại x=21
2)8-12x+6x2-3x tại x=-8