K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)

=>3x+2(1-x)>0

=>3x+2-2x>0

=>x+2>0

=>x>-2

b: (x-9)^2-x(x+9)<0

=>x^2-18x+81-x^2-9x<0

=>-27x+81<0

=>-27x<-81

=>x>3

5 tháng 4 2018

mk chịu

5 tháng 4 2018

Dùng bđt Cô si giùm mig ạ

2 tháng 1 2018

post ít một thôi

19 tháng 6 2018

A= [(2√x√x+3)+√x√x+3+3(√xx−9)]:(2√x−2√x−3−11)[(2xx+3)+xx+3+3(xx−9)]:(2x−2x−3−11)với x>= 0 , x #9

30 tháng 4 2020

bạn làm được câu 1 chưa ạ chụp cho mình

Với $x>9$ ta có:$m(\sqrt{x}-3)P>x+1\Leftrightarrow 4mx>x+1$$\Leftrightarrow (4m-1)x>1$ $(*)$*) Nếu $4m-1=0$ thì $(*)\Leftrightarrow 0>1$ (Vô lý)*) Nếu $4m-1<0$ thì $(*)\Leftrightarrow x<\dfrac{1}{4m-1}$Đặt $\dfrac{1}{4m-1}=\alpha$ thì $x<\alpha$ và $x>9$Vậy thì $9<x<\alpha$$\Rightarrow$ Tập nghiệm của bất phương trình $(*)$ không chứahết các giá trị $x>9$(Vẽ trục số ra bạn sẽ thấyTa thấy $9<x<\alpha$ tức là $x$ bị chặn ở 1 khoảng...
Đọc tiếp

Với $x>9$ ta có:

$m(\sqrt{x}-3)P>x+1\Leftrightarrow 4mx>x+1$

$\Leftrightarrow (4m-1)x>1$ $(*)$

*) Nếu $4m-1=0$ thì $(*)\Leftrightarrow 0>1$ (Vô lý)

*) Nếu $4m-1<0$ thì $(*)\Leftrightarrow x<\dfrac{1}{4m-1}$

Đặt $\dfrac{1}{4m-1}=\alpha$ thì $x<\alpha$ và $x>9$

Vậy thì $9<x<\alpha$

$\Rightarrow$ Tập nghiệm của bất phương trình $(*)$ không chứa

hết các giá trị $x>9$

(Vẽ trục số ra bạn sẽ thấy

Ta thấy $9<x<\alpha$ tức là $x$ bị chặn ở 1 khoảng từ $9$ tới $\alpha $

Mà tập nghiệm của BPT là $x$ bị chặn ở 1 khoảng từ $9$ tới dương vô cùng

Vì vậy TH1 đã không chứa hết $x>9$) 

Trường hợp này bị loại

*) Nếu $4m-1>0$ thì $(*)\Leftrightarrow x>\dfrac{1}{4m-1}$

Lập luận giống TH2 thì ta có:

$\dfrac{1}{4m-1}\leq 9$

(Đặt $\dfrac{1}{4m-1}=\alpha $ thì $x>\alpha $ và $x>9$

$\Rightarrow \alpha \leq 9$ thì tập nghiệm của BPT mới có thể bao gồm toàn bộ $x>9$)

Nhớ là $4m-1>0$ nữa

1
3 tháng 3 2020

Ghi cái quần què gì thế