
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
b, \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=81x^2-18x+1+1-10x+25x^2+18x-90x^2-2+10x\)
\(=16x^2\)
c;d;e;f tự làm, đầu I giữ lấy còn trường tồn:)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=\left(20x^2+4x^2-18x^2\right)+\left(60x+8x-20x\right)+\left(5-12-50\right)\)
\(=6x^2+48x-57\)

\(A=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z\right)\left[\left(x-y+z\right)+2\left(y-z\right)\right]+\left(z-y\right)^2=\left(x-y+z\right)\left[x+y-z\right]+\left(z-y\right)^2\)\(A=x^2-\left(y-z\right)^2+\left(z-y\right)^2=x^2\)

Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15

a) \(x^3-3x^2-x+3\) \(=\left(x^3-x\right)-\left(3x^2-3\right)=x\left(x^2-1\right)-3\left(x^2-1\right)\)
\(=\left(x-3\right)\left(x^2-1\right)\)
b) \(x^3-4x^2-x+4=\left(x^3-x\right)-\left(4x^2-4\right)=x\left(x^2-1\right)+4\left(x^2-1\right)\)
\(=\left(x-4\right)\left(x^2-1\right)\)
c) \(2x^3-x^2-2x+1=\left(2x^3-2x\right)-\left(x^2-1\right)=2x\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(2x-1\right)\left(x^2-1\right)\)
d) \(5x^3-x^2-5x+1=\left(5x^3-5x\right)-\left(x^2-1\right)=5x\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(5x-1\right)\left(x^2-1\right)\)

b/ ĐKXĐ: ...
Nhận thấy \(x=0\) không phải nghiệm , pt tương đương:
\(\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{8}{3}\)
Đặt \(x+\frac{3}{x}+1=t\)
Phương trình trở thành:
\(\frac{4}{t}+\frac{5}{t-6}=-\frac{8}{3}\)
\(\Leftrightarrow12\left(t-6\right)+15t=-8t\left(t-6\right)\)
\(\Leftrightarrow8t^2-21t-72=0\)
Tiếp tục lại 1 pt có nghiệm xấu nữa
a/ ĐKXĐ: ...
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{x^2}+\frac{1}{\left(x-2\right)^2}\right)=\frac{40}{49}\)
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{2\left(x^2-2x\right)+4}{\left(x^2-2x\right)^2}\right)=\frac{40}{49}\)
\(\Leftrightarrow\left(x^2-2x+1\right)\left(\frac{2\left(x^2-2x\right)+4}{\left(x^2-2x\right)^2}\right)=\frac{40}{49}\)
Đặt \(x^2-2x=a\)
\(\Rightarrow\left(a+1\right)\left(\frac{2a+4}{a^2}\right)=\frac{40}{49}\)
\(\Leftrightarrow49\left(a+1\right)\left(2a+4\right)=40a^2\)
Bạn coi lại đề, pt này có nghiệm Thị Nở :D
`@` `\text {Ans}`
`\downarrow`
`a,`
`x^2 (5x^3 - x - 1/2)`
`= x^2*5x^3 + x^2* (-x) + x^2 * (-1/2)`
`= 5x^5 - x^3 - 1/2x^2`