Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x-6\)
\(A=\left(x^2-2x+1\right)-7\)
\(A=\left(x-1\right)^2-7\)
Mà \(\left(x-1\right)^2\) luôn \(\ge\)\(0\) => GTNN của biểu thức là -7 với \(\left(x-1\right)^2=0\) tức x=1
a: \(=x^2-2x+1-7=\left(x-1\right)^2-7>=-7\)
Dấu '=' xảy ra khi x=1
b: \(=4x^2-4x+1+6=\left(2x-1\right)^2+6>=6\)
Dấu '=' xảy ra khi x=1/2
c: \(=9x^2-6x+1-1=\left(3x-1\right)^2-1>=-1\)
Dấu '=' xảy ra khi x=1/3
d: \(=x^2+12x+36-36=\left(x+6\right)^2-36>=-36\)
Dấu '=' xảy ra khi x=-6
e: \(=x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}>=-\dfrac{9}{4}\)
Dấu '=' xảy ra khi x=3/2
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
a ) \(A=x^2-4x-7\)
\(A=\left(x^2+2.x.2+2^2\right)-11\)
\(A=\left(x+2\right)^2-11\)
Ta có : \(\left(x+2\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2-11\ge-11\)
Vậy GTNN của \(A=-11\)
Khi : \(x+2=0\)
\(x=-2\)
b ) \(B=-x^2+4x-7\)
\(B=-\left(x^2+2.x.2-2^2\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có : \(-\left(x-2\right)^2\le0\)
\(\Rightarrow-\left(x-2\right)^2-3\le-3\)
Vậy GTLN của \(B=-3\)
Khi \(x-2=0\)
\(x=2\)
a)
\(A=\left(x^2-4x+4\right)-11\)
\(=\left(x-2\right)^2-11\)
Ta có
\(\left(x-2\right)^2-11\ge-11\)
Dấu " = " xảy ra khi x = 2
Vậy MINA= - 11 khi x=2
b)
\(B=-\left(x^2-4x+4\right)-3\)
\(B=-\left(x-2\right)^2-3\)
Ta có
\(-\left(x-2\right)^2-3\le-3\) với mọi x
Dấu " = " xảy ra khi = 2
Vậy MAXB= - 3 khi x = 2
a) -4x(x - 7) + 4x(x2 - 5) = 28x2 - 13
=> -4x2 + 28x + 4x2 - 20x = 28x2 - 13
=> (-4x2 + 4x2) + (28x - 20x) = 28x2 - 13
=> 8x = 28x2 - 13
=> 8x - 28x2 + 13 = 0
=> phương trình vô nghiệm
b) (4x2 - 5x)(3x + 2) - 7x(x + 5) = (-4 + x)(-2x - 3) + 12x2 + 2x2
=> 4x2(3x + 2) - 5x(3x + 2) - 7x2 - 35x = -4(-2x - 3) + x(-2x - 3) + 14x2
=> 12x3 + 8x2 - 15x2 - 10x - 7x2 - 35x = 8x + 12 - 2x2 - 3x + 14x2
=> 12x3 + (8x2 - 15x2 - 7x2) + (-10x - 35x) = (8x - 3x) + 12 + (-2x2 + 14x2)
=> 12x3 - 14x2 - 45x = 5x + 12 + 12x2
=> 12x3 - 14x2 - 45x - 5x - 12 - 12x2 = 0
=> 12x3 + (-14x2 - 12x2) + (-45x - 5x) - 12 = 0
=> 12x3 - 26x2 - 50x - 12 = 0
Làm nốt
Cái câu b sửa cái đề lại nhé dấu " = " ở chỗ (-2x = 3) là gì vậy?
giải
a)4x^2-20x-(4x^2+3x-4x-3)=5
4x^2-20x-4x^2-3x+4x+3=5
-19x+3=5
-19x=5-3
-189x=2
x=-2/19
mik giải luôn đó chứ ko viết đầu bài đâu
c)
2x(x-3)-2(x^2-4)=4
2x^2-6x-2x^2+8=4
-6x+8=44
-6x=4-8
-6x=-4
x=2/3
1. x2 - 2xy + y2 - ( y + 1 )2 = ( x - y )2 - ( y + 1)2
= \(\left[\left(x-y\right)-\left(y+1\right)\right]\left[\left(x-y\right)+\left(y+1\right)\right]\)
= (x-2y-1) ( x +1 )
5. x6 - y6 = (x3)2 - (y3)2
= ( x3 - y3 ) ( x3 + y3 )
=\(\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)
Bài 1 :
b, Ta có : \(4x^2-25-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)\)
\(=\left(2x-5\right)\left(2x+5-2x-7\right)\)
\(=-2\left(2x-5\right)\)
c, Ta có : \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=x\left(x+3\right)\left(x-2\right)\)
Bài 2 :
a, Để \(x^3+3x^2+3x-2⋮x+1\)
<=> \(x^3+1+3x^2+3x-3⋮x+1\)
<=> \(\left(x+1\right)^3-3⋮x+1\)
Ta thấy : \(\left(x+1\right)^3⋮x+1\)
<=> \(-3⋮x+1\)
<=> \(x+1\inƯ_{\left(3\right)}\)
<=> \(x+1=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{0,-2,2,-4\right\}\)
Vậy ...
b, Để \(2x^2+x-7⋮x-2\)
<=> \(2x^2-8x+8+9x-15⋮x-2\)
<=> \(2\left(x-2\right)^2+9x-15⋮x-2\)
Ta thấy : \(2\left(x-2\right)^2⋮x-2\)
<=> \(9x-15⋮x-2\)
<=> \(9x-18+3⋮x-2\)
Ta thấy : \(8\left(x-2\right)⋮x-2\)
<=> \(3⋮x-2\)
<=> \(x-2\inƯ_{\left(3\right)}\)
<=> \(x-2=\left\{1,-1,3,-3\right\}\)
<=> \(x=\left\{3,1,5,-1\right\}\)
Vậy ...
đề bài? bạn ơi