K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(A\left(x\right)=-x^3-x\left(5x^3+2-3x\right)+2+5x^4-12x-x^2\)

\(=-x^3-5x^4-2x+3x^2+2+5x^4-12x-x^2\)

\(=-x^3+2x^2-14x+2\)

Thay x=1 vào A(x), ta được:

\(A\left(1\right)=-1^3+2\cdot1^2-14\cdot1+2=-1+2-14+2=1-14+2=3-14=-11\)

Thay x=-1 vào A(x), ta được:

\(A\left(-1\right)=-\left(-1\right)^3+2\cdot\left(-1\right)^2-14\cdot\left(-1\right)+2\)

\(=-\left(-1\right)+2\cdot1+14+2\)

\(=1+2+14+2\)

\(=4+15=19\)

12 tháng 12 2019

a)2x.(3x+5)-x.(6x-1)=33

=>\(6x^2+10x-6x^2+x=33\)

=>11x=33

=>x=3

12 tháng 12 2019

b)x(3x-1)+12x-4=0

=>x(3x-1)+4(3x-1)=0

=>(x-4)(3x-1)=0

=>x-4=0 hoặc 3x-1=0

+)x-4=0 +)3x-1=0

=>x=4 =>x=\(\frac{1}{3}\)

20 tháng 5 2018

Bài 2 :

a )

\(\left(4x-3\right)\left(4x+3\right)-15\left(x-1\right)\left(x+1\right)-\left(x+6\right)-3x=1\)

\(\Leftrightarrow16x^2-9-15x^2+15-x-6-3x=1\)

\(\Leftrightarrow x^2-4x-1=0\)

\(\Delta=16+4=20>0\)

\(\Rightarrow\left[{}\begin{matrix}x_1=\dfrac{4+\sqrt{20}}{2}=2+\sqrt{5}\\\dfrac{4-\sqrt{20}}{2}=2-\sqrt{5}\end{matrix}\right.\)

Vậy \(x=2-\sqrt{5}\) hoặc \(x=2+\sqrt{5}\)

b )

\(\left(5x+1\right)\left(5x-1\right)-25\left(x+3\right)\left(x-1\right)=4\)

\(\Leftrightarrow25x^2-1-25x^2-50x+75=4\)

\(\Leftrightarrow-50x+70=0\)

\(\Leftrightarrow x=\dfrac{70}{50}\)

Vậy \(x=\dfrac{70}{50}\)

20 tháng 5 2018

1) A=x2-4x+4-3=(x-2)2-3

(x-2)2≥0 (Với mọi x)

=> (x-2)2-3 ≥ -3 (V...)

=> Min A=-3

Làm tương tự với những câu khác nha

28 tháng 2 2016

Đây là giải phương trình nhé

23 tháng 6 2017

a) \(A_4=\left(x^2-3x+5\right)^2+7x\cdot\left(x^2-3x+5\right)+12x^2\)

\(=\left(x^2-3x+5\right)^2+4x\cdot\left(x^2-3x+5\right)+3x\left(x^2-3x+5\right)+12x^2\)

\(=\left(x^2-3x+5\right)\left(x^2-3x+5+4x\right)+3x\left(x^2-3x+5+4x\right)\)

\(=\left[\left(x^2-3x+5\right)+3x\right]\cdot\left(x^2-3x+5+4x\right)\)

\(=\left(x^2-3x+5+3x\right)\left(x^2+x+5\right)\)

\(=\left(x^2+5\right)\left(x^2+x+5\right)\)

23 tháng 6 2017

\(A_5=2\left(x^2+5x-2\right)^2-7\left(x^2+5x-2\right)\left(x^3+3\right)+5\left(x^2+3\right)^2\)

Đặt \(x^2+5x-2=a;x^3+3=b\),Ta có:

\(2a^2-7ab+5b^2=2a^2-5ab-2ab+5b^2=a\left(2a-5b\right)-b\left(2a-5b\right)=\left(2a+5b\right)\left(a-b\right)\)

Thay \(x^2+5x-2=a;x^3+3=b\),ta có:

.......................

bn làm nốt nhé

3 tháng 6 2019

Câu 1: Chứng minh giá trị của biểu thức không phụ thuộc vào biến x

A = x (5x - 3) - x2 ( x - 1) + x (x2 - 6x) + 3x - 10

A= 5x2-3x -x3 +x2 +x3-6x2+3x-10

A= -10

Vậy giá trị của biểu thức A ko phụ thuộc vào biến x

B = ( 2x + 1) x - x2 (x + 2) + x3 - x + 3

B= 2x2+x-x3-2x2+x3-x+3

B= 3

Vậy giá trị của biểu thức B ko phụ thuộc vào biến x

C = 5x ( x2 - 7x + 2) - x2 (5x - 8) + 27x2 - 10x + 2

C= 5x3-35x2+10x-5x3+8x2+27x2-10x+2

C= 2

Vậy giá trị của biểu thức C ko phụ thuộc vào biến x

Câu 2: Tìm x:

1. 4x (3x + 2) - 6x (2x + 5) + 21 (x - 1) = 0

=> 12x2 + 8x -12x2 -30x +21x -21=0

=> -x -21 = 0

=> x = -21

Vậy x = -21

2. 5x (12x + 7) - 3x (20x - 5) = -100

=> 60x2 + 35x - 60x2 + 15x +100=0

=> 50x + 100 =0

=> x = -2

Vậy x = -2

4. 10 (3x - 2) - 3 (5x + 2) + 5 (11 - 4x) = 25

=> 30x-20-15x-6+55-20x-25=0

=> -5x +4 =0

=> x = 4/5

Vậy x = 4/5

Câu 1

a) \(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)+3x-10\)

\(A=5x^2-3x-x^3+x^2+x^3-6x^2+3x-10\)

\(A=-10\)

Vậy biểu thức A không phụ thuộc vào biến x

b) \(B=\left(2x+1\right)x-x^2\left(x+2\right)+x^3-x+3\)

\(B=2x^2+x-x^3-2x^2+x^3-x+3\)

\(B=3\)

Vậy biểu thức B không phụ thuộc vào biến x

c) \(C=5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x+2\)

\(C=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x+2\)

C = 2

Vậy biểu thức C không phụ thuộc vào biến x

11 tháng 6 2019

Phân tích đa thức thành nhân tử:(em làm luôn đấy,ko ghi lại đề)

\(\left(x^3+y^3\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)+3xy\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)\(=\left(x+y\right)\left[\left(x+y\right)^2-1^2\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

11 tháng 6 2019

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow\left(2x\right)^3+3.\left(2x\right)^2.1+3.2x.1^2+1^3=0\)

\(\Leftrightarrow\left(2x+1\right)^3=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

\(2x^2+5x-3=0\Leftrightarrow\left(2x^2+6x\right)+\left(-x-3\right)=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)

\(x^2-2x-3=0\Leftrightarrow\left(x^2-3x\right)+\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}.}\)

\(\left(5x-1\right)+2\left(1-5x\right)\left(4+5x\right)+\left(5x+4\right)^2\)

\(=5x-1+2\left(4+5x-20x-25x^2\right)+25x^2+40x+16\)

\(=25x^2+45x+15+8+10x-40x-50x^2\)

\(=-25x^2+15x+23\)

\(\left(x-y\right)^3+\left(y+x\right)^3+\left(y-x\right)^3-3xy\left(x+y\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)^3+\left(x+y\right)^3-3x^2y-3xy^2\)

\(=\left(x+y\right)^3-3x^2y-3xy^2\)

\(=x^3+3x^2y+3xy^2+y^3-3xy^2-3x^2y\)

\(=x^3+y^3\)

3 tháng 9 2016

1)

a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)

=>đpcm

b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)

=>đpcm

2,

a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)

\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)

\(\Leftrightarrow50x=-100\)

\(\Leftrightarrow x=-2\)

b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)

\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)

\(\Leftrightarrow-0,69x=0,138\)

\(\Leftrightarrow x=-0,2\)

3 tháng 9 2016

Câu 1:

a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^2-x+3\)

\(=x^3+3\)(ko thể CM)

b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

\(=-24\)(đpcm)