
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, P(x)=5x3+2x4-x2+3x2-x3-2x4+1-4x3
= (5x3 -x3 -4x3)+(2x4 -2x4)+(-x2+3x2)+1
= 2x2 + 1
b, ta có: P(1)=2.12+1=2+1=3
ta có:P(-1)=2.(-1)2+1=2+1=3
c, vì x2 ≥ 0 với mọi x
=> 2x2 ≥0
=> 2x2+1 ≥1
=> P(x) > 0
vậy đa thức P(x) vô nghiệm.



a,\(2x+1=0< =>2x=-1< =>x=-\frac{1}{2}\)
b,\(\left(x+1\right)\left(2x-1\right)=0< =>\orbr{\begin{cases}x+1=0\\2x-1=0\end{cases}< =>\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
c,\(1-4x^2=0< =>\left(1-2x\right)\left(1+2x\right)=0< =>\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{1}{2}\end{cases}}\)
d,\(2x^2-3x=0< =>x\left(2x-3\right)=0< =>\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)

Ta có :
\(2x^2-3x=0\)
\(\Leftrightarrow\)\(x\left(2x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\2x-3=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\2x=3\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{0;\frac{3}{2}\right\}\)
Cho x = by + cz ; y = ax + cz; z = ax + by.
\(CMR:A=\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\)

Ta có
\(x-y=\left(by+cz\right)-\left(ax+cz\right)=by-ax\)
\(\Leftrightarrow x\cdot\left(a+1\right)=y\cdot\left(b+1\right)\)
\(y-z=\left(ax+cz\right)-\left(ax+by\right)=cz-by\)
\(\Leftrightarrow z\cdot\left(c+1\right)=y\cdot\left(b+1\right)\)
\(x-z=\left(by+cz\right)-\left(ax+by\right)=cz-ax\)
\(\Leftrightarrow x\cdot\left(a+1\right)=z\cdot\left(c+1\right)\)
\(\Rightarrow x\cdot\left(a+1\right)=z\cdot\left(c+1\right)=y\left(b+1\right)\)
Đặt \(x\cdot\left(a+1\right)=z\cdot\left(c+1\right)=y\left(b+1\right)=k\)
\(\Rightarrow\left\{{}\begin{matrix}a+1=\dfrac{k}{x}\\b+1=\dfrac{k}{y}\\c+1=\dfrac{k}{z}\end{matrix}\right.\)
Thay vào A, ta có :
\(A=\dfrac{1}{\dfrac{k}{x}}+\dfrac{1}{\dfrac{k}{y}}+\dfrac{1}{\dfrac{k}{z}}\)
\(=\dfrac{x}{k}+\dfrac{y}{k}+\dfrac{z}{k}\)
=\(\dfrac{x+y+z}{k}\)
Vì z = ax + by; x = cz + by; y = ax + cz nen :
\(k=z\cdot\left(c+1\right)=cz+z=cz+ax+by\)
\(\Rightarrow A=\dfrac{2\cdot\left(ax+by+czz\right)}{ax+by+cz}=2\)
⇒ĐPCM
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000