Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x – 6 + x(x – 2) = 0
=> 3x - 6 + x2 - 2x = 0
=> ( 3x - 2x ) - 6 + x2 = 0
=> x - 6 + x2 = 0
=> x2 + x = 6
=> x( x + 1 ) = 2 . 3
=> x = 2
b) 2x(x – 3) – x(x – 6) – 3x = 0
=> 2x2 - 6x - x2 + 6x - 3x = 0
=> ( 2x2 - x2 ) + ( 6x - 6x ) - 3x = 0
=> x2 - 3x = 0
=> x( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x - 3 = 0}\end{cases}\Rightarrow\orbr{\begin{cases}\text{x = 0}\\\text{x = 3}\end{cases}}}\)
Ta có 10x . 5y = 20y
=> 10x = (20 : 5)y
=> 10x = 4y
Với x ; y > 0 thì
10x = ...0 ;
4y = ...4 ; ...6 ;
=> Không có x;y thỏa mãn
=> x = y = 0
b) 2x = 4y - 1
=> 2x = 22y - 2
=> x = 2y - 2 (1)
Lại có 27y = 3x + 8
=> 33y = 3x + 8
=> 3y = x + 8
=> x = 3y - 8 (2)
Từ (1) và (2) => 2y - 2 = 3y - 8
=> y = 6
=> x = 10
Vậy x = 10 ; y = 6
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
(2x - 1)6 = (2x - 1)8
=> (2x - 1)8 - (2x - 1)6 = 0
=> (2x - 1)6 . [(2x - 1)2 - 1] = 0
\(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\\left(2x-1\right)^2=1\end{cases}\Rightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}}\)
• Nếu 2x - 1 = 0 \(\Rightarrow x=\frac{1}{2}\)
• Nếu (2x - 1)2 = 1 \(\Rightarrow\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}\Rightarrow}}\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy, \(x\in\left\{0;\frac{1}{2};1\right\}\)
\(1=\left(2x-1\right)^2\)
\(1=4x^2-4x+1\)
\(4x\left(x-1\right)=0\)
\(\orbr{\begin{cases}x-1=0\\4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
học tốt nha
Lời giải:
a. $3x-5y+1=3.\frac{1}{3}-5.\frac{-1}{5}+1=1+1+1=3$
b.
Với $x=1$ thì $3x^2-2x-5=3.1^2-2.1-5=-4$
Với $x=-1$ thì $3x^2-2x-5=3(-1)^2-2.(-1)-5=0$
Với $x=\frac{5}{3}$ thì $3x^2-2x-5=3(\frac{5}{3})^2-2.\frac{5}{3}-5=0$
c.
$x-2y^2+z^3=4-2.(-1)^2+(-1)^3=1$
d.
$xy-x^2-xy^3=(-1)(-1)-(-1)^2-(-1)(-1)^3=-1$
Trả lời:
a, \(\left(3x+y-z\right)-\left(4x-2y+6z\right)=3x+y-z-4x+2y-6z=-x+3y-7z\)
b, \(K=2x\left(-3x+5\right)+3x\left(2x-12\right)+26x=-6x^2+10x+6x^2-36x+26x=0\)
d, \(A=3x^2\left(x-1\right)-\left(3x^2+x\right)=3x^3-3x^2-3x^2-x=3x^3-6x^2+x\)
e, \(B=y\left(2y^2+1\right)-y^2\left(2+2y-y^2\right)=2y^3+y-2y^2-2y^3+y^4=y^4-2y^2+y\)
I . Trắc Nghiệm
1B . 2D . 3C . 5A
II . Tự luận
2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1
\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)
=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1
=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)
= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
b, thay x=1,y=2 vào đa thức A
Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2
= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2
= -6 + 12 - 12 - 2
= -8
3,Sắp xếp
f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x
g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)
=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x
=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)
= 3x\(^2\) + x
g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)
=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x
=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)
= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x