K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2023

a) \(\left(x-3\right)^2+2x-6=0\)

\(\Leftrightarrow x^2-6x+9+2x-6=0\)

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b) \(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\) (ĐKXĐ: \(x\ne\pm3\))

\(\Leftrightarrow\dfrac{x+3}{x-3}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x+3}\)

\(\Leftrightarrow\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}-\dfrac{48}{\left(x+3\right)\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)}\)

\(\Leftrightarrow x^2+6x+9-48=x^2-6x+9\)

\(\Leftrightarrow x^2-x^2+6x+6x+9-9-48=0\)

\(\Leftrightarrow12x-48=0\)

\(\Leftrightarrow12x=48\)

\(\Leftrightarrow x=\dfrac{48}{12}\)

\(\Leftrightarrow x=4\left(tm\right)\)

a: (x-3)^2+2x-6=0

=>(x-3)^2+2(x-3)=0

=>(x-3)(x-3+2)=0

=>(x-3)(x-1)=0

=>x=3 hoặc x=1

b:

ĐKXĐ: x<>3; x<>-3

 \(\dfrac{x+3}{x-3}+\dfrac{48}{9-x^2}=\dfrac{x-3}{x+3}\)

=>\(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48}{\left(x-3\right)\cdot\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x+3\right)^2}\)

=>(x+3)^2-48=(x-3)^2

=>x^2+6x+9-48=x^2-6x+9

=>6x-39=-6x+9

=>12x=48

=>x=4(nhận)

a: \(\dfrac{x}{2}+\dfrac{1-x}{3}>0\)

=>3x+2(1-x)>0

=>3x+2-2x>0

=>x+2>0

=>x>-2

b: (x-9)^2-x(x+9)<0

=>x^2-18x+81-x^2-9x<0

=>-27x+81<0

=>-27x<-81

=>x>3

29 tháng 6 2021

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x+3}}\)(\(x\ge0,x\ne9\))

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-3}=\sqrt{x}-2\left(x\ge0,x\ne9\right)\)

 

29 tháng 6 2021

a) \(\dfrac{3-\sqrt{x}}{x-9}=\dfrac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\dfrac{1}{\sqrt{x}+3}\)

b) \(\dfrac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

c) \(6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-\left|3-x\right|\)

mà \(x< 3\Rightarrow3-x>0\Rightarrow6-2x-\left|3-x\right|=6-2x-3+x=3-x\)

1 tháng 3 2020

a) 3x(x - 1) + 2(x - 1) = 0

<=> (3x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)

Vậy S = {-2/3; 1}

b) x2 - 1 - (x + 5)(2 - x) = 0

<=> x2 - 1 - 2x + x2 - 10 + 5x = 0

<=> 2x2 + 3x - 11 = 0

<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0

<=> (x + 3/4)2 - 97/16 = 0

<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)

Vậy S = {\(\frac{\sqrt{97}-3}{4}\)\(-\frac{\sqrt{97}-3}{4}\)

d) x(2x - 3) - 4x + 6 = 0

<=> x(2x - 3) - 2(2x - 3) = 0

<=> (x - 2)(2x - 3) = 0

<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

Vậy  S = {2; 3/2}

e)  x3 - 1 = x(x - 1)

<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0

<=> (x - 1)(x2 + x +  1 - x) = 0

<=> (x - 1)(x2 + 1) = 0

<=> x - 1 = 0

<=> x = 1

Vậy S = {1}

f) (2x - 5)2 - x2 - 4x - 4 = 0

<=> (2x - 5)2 - (x + 2)2 = 0

<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

<=> (x - 7)(3x - 3) = 0

<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy S = {7; 1}

h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0

<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0

<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0

<=> (x - 2)(x - 6) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

Vậy S = {2; 6}

\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)

\(3x.x-3x+2x-2=0\)

\(2x-2=0\)

\(2x=2\)

\(x=1\)

9 tháng 6 2018

a) ( x - 3)4 + ( x - 5)4 = 82

Đặt : x - 4 = a , ta có :

( a + 1)4 + ( a - 1)4 = 82

⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82

⇔ 2a4 + 12a2 - 80 = 0

⇔ 2( a4 + 6a2 - 40) = 0

⇔ a4 - 4a2 + 10a2 - 40 = 0

⇔ a2( a2 - 4) + 10( a2 - 4) = 0

⇔ ( a2 - 4)( a2 + 10) = 0

Do : a2 + 10 > 0

⇒ a2 - 4 = 0

⇔ a = + - 2

+) Với : a = 2 , ta có :

x - 4 = 2

⇔ x = 6

+) Với : a = -2 , ta có :

x - 4 = -2

⇔ x = 2

KL.....

b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8

⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680

⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680

Đặt : n2 - 9n + 19 = t , ta có :

( t - 1)( t + 1) = 1680

⇔ t2 - 1 = 1680

⇔ t2 - 412 = 0

⇔ ( t - 41)( t + 41) = 0

⇔ t = 41 hoặc t = - 41

+) Với : t = 41 , ta có :

n2 - 9n + 19 = 41

⇔ n2 - 9n - 22 = 0

⇔ n2 + 2n - 11n - 22 = 0

⇔ n( n + 2) - 11( n + 2) = 0

⇔ ( n + 2)( n - 11) = 0

⇔ n = - 2 hoặc n = 11

+) Với : t = -41 ( giải tương tự )

8 tháng 6 2018

@Giáo Viên Hoc24.vn

@Giáo Viên Hoc24h

@Giáo Viên

@giáo viên chuyên

@Akai Haruma

17 tháng 7 2019

\(% MathType!MTEF!2!1!+- % feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeaacaGaaiaabeqaamaabaabaaGceaqabeaacaaI2a % GaeyOeI0IaaGOmaiaadIhacqGHsisldaGcaaqaaiaaiMdacqGHsisl % caaI2aGaamiEaiabgUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaabe % aakmaabmaabaGaamiEaiabgYda8iaaiodaaiaawIcacaGLPaaaaeaa % cqGH9aqpcaaI2aGaeyOeI0IaaGOmaiaadIhacqGHsisldaGcaaqaam % aabmaabaGaaG4maiabgkHiTiaadIhaaiaawIcacaGLPaaadaahaaWc % beqaaiaaikdaaaaabeaaaOqaaiabg2da9iaaiAdacqGHsislcaaIYa % GaamiEaiabgkHiTmaaemaabaGaaG4maiabgkHiTiaadIhaaiaawEa7 % caGLiWoaaeaacqGH9aqpcaaI2aGaeyOeI0IaaGOmaiaadIhacqGHRa % WkcaaIZaGaeyOeI0IaamiEaaqaaiabg2da9iaaiMdacqGHsislcaaI % ZaGaamiEaaqaamaalaaabaGaaG4maiabgkHiTmaakaaabaGaamiEaa % WcbeaaaOqaaiaadIhacqGHsislcaaI5aaaamaabmaabaGaamiEaiab % gwMiZkaaicdacaGGSaGaamiEaiabgcMi5kaaiMdaaiaawIcacaGLPa % aaaeaacqGH9aqpdaWcaaqaaiabgkHiTmaabmaabaWaaOaaaeaacaWG % 4baaleqaaOGaeyOeI0IaaG4maaGaayjkaiaawMcaaaqaamaabmaaba % WaaOaaaeaacaWG4baaleqaaOGaeyOeI0IaaG4maaGaayjkaiaawMca % amaabmaabaWaaOaaaeaacaWG4baaleqaaOGaey4kaSIaaG4maaGaay % jkaiaawMcaaaaaaeaacqGH9aqpdaWcaaqaaiabgkHiTiaaigdaaeaa % daGcaaqaaiaadIhaaSqabaGccqGHRaWkcaaIZaaaaaqaamaalaaaba % GaamiEaiabgkHiTiaaiwdadaGcaaqaaiaadIhaaSqabaGccqGHRaWk % caaI2aaabaWaaOaaaeaacaWG4baaleqaaOGaeyOeI0IaaG4maaaada % qadaqaaiaadIhacqGHLjYScaaIWaGaaiilaiaadIhacqGHGjsUcaaI % 5aaacaGLOaGaayzkaaaabaGaeyypa0ZaaSaaaeaacaWG4bGaeyOeI0 % IaaGOmamaakaaabaGaamiEaaWcbeaakiabgkHiTiaaiodadaGcaaqa % aiaadIhaaSqabaGccqGHRaWkcaaI2aaabaWaaOaaaeaacaWG4baale % qaaOGaeyOeI0IaaG4maaaaaeaacqGH9aqpdaWcaaqaamaakaaabaGa % amiEaaWcbeaakmaabmaabaWaaOaaaeaacaWG4baaleqaaOGaeyOeI0 % IaaGOmaaGaayjkaiaawMcaaiabgkHiTiaaiodadaqadaqaamaakaaa % baGaamiEaaWcbeaakiabgkHiTiaaikdaaiaawIcacaGLPaaaaeaada % GcaaqaaiaadIhaaSqabaGccqGHsislcaaIZaaaaaqaaiabg2da9maa % laaabaWaaeWaaeaadaGcaaqaaiaadIhaaSqabaGccqGHsislcaaIYa % aacaGLOaGaayzkaaWaaeWaaeaadaGcaaqaaiaadIhaaSqabaGccqGH % sislcaaIZaaacaGLOaGaayzkaaaabaWaaOaaaeaacaWG4baaleqaaO % GaeyOeI0IaaG4maaaaaeaacqGH9aqpdaGcaaqaaiaadIhaaSqabaGc % cqGHsislcaaIYaaaaaa!C78C! \begin{array}{l} 6 - 2x - \sqrt {9 - 6x + {x^2}} \left( {x < 3} \right)\\ = 6 - 2x - \sqrt {{{\left( {3 - x} \right)}^2}} \\ = 6 - 2x - \left| {3 - x} \right|\\ = 6 - 2x + 3 - x\\ = 9 - 3x\\ \dfrac{{3 - \sqrt x }}{{x - 9}}\left( {x \ge 0,x \ne 9} \right)\\ = \dfrac{{ - \left( {\sqrt x - 3} \right)}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}\\ = \dfrac{{ - 1}}{{\sqrt x + 3}}\\ \dfrac{{x - 5\sqrt x + 6}}{{\sqrt x - 3}}\left( {x \ge 0,x \ne 9} \right)\\ = \dfrac{{x - 2\sqrt x - 3\sqrt x + 6}}{{\sqrt x - 3}}\\ = \dfrac{{\sqrt x \left( {\sqrt x - 2} \right) - 3\left( {\sqrt x - 2} \right)}}{{\sqrt x - 3}}\\ = \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}{{\sqrt x - 3}}\\ = \sqrt x - 2 \end{array}\)

17 tháng 7 2019

\(6-2x-\sqrt{9-6x+x^2}\)

= \(6-2x-\sqrt{\left(3-x\right)^2}\)

= \(\left\{{}\begin{matrix}6-2x-3+x\\6-2x+3-x\end{matrix}\right.\)

= \(\left\{{}\begin{matrix}3-x\\9-3x\end{matrix}\right.\)

\(\frac{3-\sqrt{x}}{x-9}\)

=\(\frac{-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(x-3\right)}\)

= \(\frac{-1}{\sqrt{x}+3}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

$(\sqrt{2}-\sqrt{3})^2=(\sqrt{2})^2-2.\sqrt{2}.\sqrt{3}+(\sqrt{3})^2$
$=2-2\sqrt{6}+3=5-2\sqrt{6}$

Bạn chú ý lần sau viết đề bằng công thức toán và viết đúng chính tả.