Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\left|2x-\dfrac{1}{2}\right|\ge0\)
\(\Rightarrow\left|2x-\dfrac{1}{2}\right|-2017\ge-2017\)
\(\Rightarrow A\ge-2017\)
Dấu "=" xảy ra \(\Leftrightarrow\left|2x-\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow2x-\dfrac{1}{2}=0\)
\(\Leftrightarrow2x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{4}\)
Vậy, MinA = -2017 \(\Leftrightarrow x=\dfrac{1}{4}\)
1) Tìm giá trị nhỏ nhất của biểu thức:
A = \(\left|2x-\dfrac{1}{2}\right|\) - 2017
Ta có:
\(\left|2x-\dfrac{1}{2}\right|\) ≥ 0
=> \(\left|2x-\dfrac{1}{2}\right|\) - 2017 ≥ -2017
Dấu " = " xảy ra khi \(2x-\dfrac{1}{2}\) = 0 hay x = \(\dfrac{1}{4}\)
Vậy Min A = -2017 khi x = \(\dfrac{1}{4}\)
\(A=2x^2-2\ge-2\)
Dấu "=" xảy ra khi: \(x=0\)
\(B=\left|x+\dfrac{1}{3}\right|-\dfrac{1}{6}\ge-\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(x=-\dfrac{1}{3}\)
\(C=\dfrac{\left|x\right|+2017}{2018}\ge\dfrac{2017}{2018}\)
Dấu "=" xảy ra khi: \(x=0\)
\(D=3-\left(x+1\right)^2\le3\)
Dấu "=" xảy ra khi: \(x=-1\)
\(E-\left|0,1+x\right|-1,9\le-1,9\)
Dấu "=" xảy ra khi: \(x=-0,1\)
\(F=\dfrac{1}{\left|x\right|+2017}\le\dfrac{1}{2017}\)
Dấu "=" xảy ra khi: \(x=0\)
Có: \(\left(x-7\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-7\right)^2+1\ge1\)
\(\Rightarrow min\left(x-7\right)^2+1=1khi\left(x-7\right)^2=0\)
\(\Rightarrow\left(x-7\right)^2=0^2\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
Vậy GTNN của (x-7)2+1 là 1 tại x=7
Có:\(\left(5x-3\right)^{2018}=\left[\left(5x-3\right)^2\right]^{1009}\)
\(Co:\left(5x-3\right)^2\ge0\)
\(\Rightarrow\left[\left(5x-3\right)^2\right]^{1009}\ge0\)
\(\Rightarrow\left(5x-3\right)^{2018}\ge0\)
\(\Rightarrow\left(5x-3\right)^{2018}-2017\ge-2017\)
\(\Rightarrow min\left(5x-3\right)^{2018}-2017=-2017khi\left(5x-3\right)^2=0\)
\(\Rightarrow5x-3=0\)
\(\Rightarrow x=\frac{3}{5}\)
Vậy GTNN của (5x-3)2018 -2017 là -2017 khi \(x=\frac{3}{5}\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
a/ Do \(\left(y-2017\right)^{2014}\ge0\) \(\forall y\Rightarrow A\ge-2017\)
\(\Rightarrow A_{min}=-2017\) khi \(y-2017=0\Rightarrow y=2017\)
b/ \(\left|3y-6045\right|^{2011}\le\left(x-1\right)^{2017}-x\left(x-1\right)^{2017}\)
\(\Leftrightarrow\left|3y-6045\right|^{2011}\le\left(1-x\right)\left(x-1\right)^{2017}\)
\(\Leftrightarrow\left|3y-6045\right|^{2011}\le-\left(x-1\right)\left(x-1\right)^{2017}\)
\(\Leftrightarrow\left|3y-6045\right|^{2011}\le-\left(x-1\right)^{2018}\) (1)
Mà \(\left\{{}\begin{matrix}\left|3y-6045\right|^{2011}\ge0\\-\left(x-1\right)^{2018}\le0\end{matrix}\right.\)
Nên (1) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left|3y-6045\right|^{2011}=0\\-\left(x-1\right)^{2018}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y-6045=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=2015\end{matrix}\right.\)
\(\Rightarrow B=3.1^2-2.1.2015+6042=2015\)