\(x^5-2012x^4+2012x^3-2012x^2+2012x-2012\)tại x = 2011...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có 2011 = x => 2012 = x + 1

Thay x + 1 = 2012 vào biểu thức ta dc:

x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012

= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1

Vậy giá trị của biểu thức là -1 khi x = 2011

b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46

Vậy ...

5 tháng 7 2015

Thay 2012 = x + 1

\(B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}+...-\left(x+1\right).x^2+\left(x+1\right).x-1\)

\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^3-x^2+x^2+x-1\)

\(=x-1=2011-1=2010\)

24 tháng 4 2021

cho 2012=x+1

B=x2012 - (x+1)x^2010+(x+1)x^2009-...+(x+1)x+1

B=x^2012-x^2012-x^2011+x^2011+x^2010-...+x^2+x+1

B=x+1=2012

14 tháng 2 2018

Vì \(\left|x-1\right|\ge0\) và \(\left(y+2\right)^{20}\ge0\) nên \(\left|x-1\right|+\left(y+2\right)^{20}\ge0\)

Mà \(\left|x-1\right|+\left(y+2\right)^{20}=0\) ( đề bài cho )

\(\Rightarrow\)\(\left|x-1\right|=\left(y+2\right)^{20}=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{20}=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1;y=-2\) vàp biểu thức \(2x^2-5y^3+2015\) ta được : 

\(2.1^2-5.\left(-2\right)^3+2015=2.1-5.\left(-8\right)+2015=2-\left(-40\right)+2015=42+2015=2057\)

30 tháng 3 2017

Giải:

Thay \(2012=x+1\) vào biểu thức ta có:

\(\Rightarrow B=x^{2011}-\left(x+1\right).x^{2010}+\left(x+1\right).x^{2009}-...-\left(x+1\right).x^2+\left(x+1\right).x-1\)

\(=x^{2011}-x^{2011}-x^{2010}+x^{2010}+x^{2009}-...-x^2+x^2+x-1\)

\(=x-1\)

\(\Rightarrow B=2011-1=2010\)

Vậy \(B=2010\)

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

27 tháng 5 2020

a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)

\(< =>2x+2=12x-3\)

\(< =>10x=5\)\(< =>x=\frac{1}{2}\)

khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)

\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)

xong nhe 

27 tháng 5 2020

Cái này thì EZ mà sư phụ : ]

a) 2(x+1) = 3(4x-1)

=> 2x + 2 = 12x - 3

=> 2x - 12x = -3 - 2

=> -10x = -5

=> x = 1/2

Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)

b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)

\(x-5=0\Rightarrow x=5\)

\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)

Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )

9 tháng 5 2022

help me 

 

9 tháng 5 2022

làm ơn ai giải đi