\(\sqrt{1+2006^2+\frac{2006^2}{2007^2}}+\frac{2006}{2007}\)

b/Cho A=

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2016

1) Ta có bđt sau : \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) (bạn tự c/m)

Áp dụng : \(\frac{\sqrt{2005}+\sqrt{2007}}{2}< \sqrt{\frac{2005+2007}{2}}\)

\(\Rightarrow\sqrt{2005}+\sqrt{2007}< 2\sqrt{2006}\)

2) Xét : \(A-B=2\sqrt{2014}-\left(\sqrt{2013}+\sqrt{2015}\right)\)

Theo câu 1) , ta dễ dàng c/m được \(2\sqrt{2014}>\sqrt{2013}+\sqrt{2015}\)

Do đó A - B > 0 => A > B

8 tháng 8 2016

2) Bình phương 2 vế ta có:

 \(A^2=2014-2013=1\)

\(B^2=2015-2014=1\)

=>A=B

21 tháng 8 2018

Nhân cả 2 với (\(\sqrt{2015^2-1}\)+\(\sqrt{2014^2-1}\))

A = 2015^2 -1 -2014^2 + 1 = (2014 + 1)^2 -2014^2 = 2.2014 + 1

B = 2.2014

=> A = B + 1

16 tháng 7 2019

Bài 2:

\(D=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{120\sqrt{121}+121\sqrt{120}}\)

Với mọi \(n\inℕ^∗\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}]^2-\left(n\sqrt{n+1}\right)^2}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\left(\sqrt{n}+1\right)}{n\left(n+1\right)\left(n+1-n\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)\sqrt{n}}{n\left(n+1\right)}-\frac{n\sqrt{n+1}}{n\left(n+1\right)}\)

\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

\(\Rightarrow D=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{4}}+....+\frac{1}{\sqrt{120}}-\frac{1}{\sqrt{121}}\)

\(=1-\frac{1}{\sqrt{121}}=\frac{10}{11}\)

17 tháng 7 2019

Bài 1: chắc lại phải "liên hợp" gì đó rồi:V

\(\sqrt{2009}-\sqrt{2008}=\frac{1}{\sqrt{2009}+\sqrt{2008}}\)

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)

Đó \(\sqrt{2009}+\sqrt{2008}>\sqrt{2007}+\sqrt{2006}\)

Nên \(\sqrt{2009}-\sqrt{2008}< \sqrt{2007}-\sqrt{2006}\)

Tổng quát ta có bài toán sau, với So sánh \(\sqrt{n}-\sqrt{n-1}\text{ và }\sqrt{n-2}-\sqrt{n-3}\)

Với \(n\ge3\). Lời giải xin mời các bạn:)

14 tháng 9 2017

\(\sqrt{2007}-\sqrt{2006}=\frac{\sqrt{2007}-\sqrt{2006}}{2007-2006}=\frac{\sqrt{2007}-\sqrt{2006}}{\left(\sqrt{2007}-\sqrt{2006}\right)\left(\sqrt{2007}+\sqrt{2006}\right)}\)

\(=\frac{1}{\sqrt{2007}+\sqrt{2006}}< \frac{1}{\sqrt{2006}+\sqrt{2006}}=\frac{1}{2\sqrt{2006}}\)

Vậy \(\sqrt{2007}-\sqrt{2006}< \frac{1}{2\sqrt{2006}}\)

Bạn áp dùng biểu thức liên hợp là được

Ta có :

\(\sqrt{2007}-\sqrt{2006}=\frac{1}{\sqrt{2007}+\sqrt{2006}}\)(1)

\(\frac{1}{2\sqrt{2006}}=\frac{1}{\sqrt{2006}+\sqrt{2006}}\)(2)

Từ (1)(2)=>\(\frac{1}{\sqrt{2007}+\sqrt{2006}}< \frac{1}{\sqrt{2006}+\sqrt{2006}}\)

\(\Rightarrow\sqrt{2007}-\sqrt{2006}>\frac{1}{2\sqrt{2006}}\)

12 tháng 7 2016

bạn cứ nhân lên hợp cho từng cái 1 là ra đó mà

12 tháng 7 2016

sao het dc

b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\) 

=> đpcm