Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ko có số n thỏa mãn
b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3
a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.
n la so nguyen to lon hon 3 nen ko chia het cho 3.
Vay n^2 chia cho 3 du 1 <=> n^2=3k+1
Do do : n^2+2006=3k+1+2006 =3k+2007 chia het cho 3
Vay n^2+2006 la hop so
**** nhe
n2 là hợp số vì nó chia hết cho n ( n2=n.n đương nhiên chia hết cho n) và n>1 ( nếu=1 thì vẫn có thể nguyên tố)
a: Để A là số nguyên thì \(n+1-4⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5\right\}\)
b: Để B là số nguyên thì \(2n+4-7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
c: Để C là số nguyên thì \(2n-2+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
d: Để D là số nguyên thì \(-n-2+7⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-1;-3;5;-9\right\}\)
a, \(A=\frac{n-1}{n+4}\) là phân số
\(\Leftrightarrow n+4\ne0\)
\(\Rightarrow n\ne-4\)
b, \(A=\frac{n-1}{n+4}\inℤ\Leftrightarrow n-1⋮n+4\)
\(\Rightarrow n+4-5⋮n+4\)
\(n+4⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(n\inℤ\Rightarrow n+4\inℤ\)
\(\Rightarrow n+4\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-5;-3;-9;1\right\}\)
\(a)\) Để A là phân số thì \(n+4\ne0\)\(\Rightarrow\)\(n\ne-4\)
\(b)\) Ta có :
\(A=\frac{n-1}{n+4}=\frac{n+4-5}{n+4}=\frac{n+4}{n+4}-\frac{5}{n+4}=1-\frac{5}{n+4}\)
Để \(A\inℤ\) thì \(\frac{5}{n+4}\inℤ\)\(\Rightarrow\)\(5⋮\left(n+4\right)\)\(\Rightarrow\)\(\left(n+4\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)
Suy ra :
\(n+4\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(n\) | \(-3\) | \(-5\) | \(1\) | \(-9\) |
Vậy \(n\in\left\{-9;-5;-3;1\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k+1 hoặc 3k+2 (k\(\varepsilon\) N*) và n2+2006 luôn lớn hơn 3
TH1: Với n = 3k+2, ta có : n2+2006 = (3k+1)2+2006 = 9k2+ 6k + 2007 = 3 ( 3K2 +2k + 669) luôn chia hết cho 3 với mọi k\(\in\) N* \(\Rightarrow\) n2+2006 là hợp số
TH2: Với n = 3k+2, ta có: n2+ 2006 = (3k+2)2+2006 = 9k2+ 12k + 2010 = 3 ( 3k2 + 4k + 670) luôn chia hết cho 3 với mọi k\(\varepsilon\) N*\(\Rightarrow\) n2+2006 là hợp số
Vậy n2+2006 là hợp số với n là số nguyên tố lớn hơn 3
3.a) tổng các cs của tử là 3 nên chia hết cho 3
b) tổng các cs của rử là 9 nên chia hết cho 9
a)giả sử \(n^2+2006\) là số chính phương, khi đó đặt \(n^2+2006=a^2\left(n\in Z\right)\)
\(=>\left(a+n\right)\left(a-n\right)=2006\) (*)
TH1: nếu (a-n) và (a+n) khác tính chẵn lẻ thì (*) sai
TH2: nếu (a-n) và (a+n) cùng tính chẵn lẻ thì (a-n) chia hết cho 2, (a+n) chia hết cho 2 => VT chia hết cho 4
mà VP =2006 không chia hết cho 4 nên không tồn tại n
b) n là số nguyên tố >3 nên n không chia hết cho 3=> n= 3k+1 hoặc n=3k+2
Với n= 3k+1 thì \(n^2+2006=\left(3k+1\right)^2+2006=9k^2+6k+2007\) chia hết cho 3=> \(n^2+2006\) là hợp số
Với n=3k+2 thì \(n^2+2006=\left(3k+2\right)^2+2006=9k^2+12k+2010\) chia hết cho 3=> \(n^2+2006\) là hợp số