Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có|x+12| >= 0
=> 3-|x+12| \(\le\)3
Giá trị lớn nhất của A là 3 khi x=-12
a3+b3=(a+b)(a2+b2-ab) mà (a+b) chia hết 6
=> a3+b3 chia hét 6
= đpcm
Bài này làm từng câu thôi :
\(A=1+3^1+3^2+.......+3^{2014}+3^{2015}\)
\(\Rightarrow3A=3+3^2+3^3+......+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+......+3^{2016}\right)-\left(1+3^1+.....+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\)
\(\Rightarrow A=\frac{3^{2016}-1}{2}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)
\(\frac{\Rightarrow1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Thay vào M ta có
\(\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)
P/s : hỏi từng câu thôi
a) \(\frac{3^{17}.81^{11}}{27^{10}.9^{15}}=\frac{3^{17}.\left(3^4\right)^{11}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\frac{3^{17}.3^{44}}{3^{30}.3^{30}}=\frac{3^{61}}{3^{60}}=3\)
b) \(\frac{9^2.2^{11}}{16^2.6^3}=\frac{\left(3^2\right)^2.2^{11}}{\left(2^4\right)^2.\left(2.3\right)^3}=\frac{3^4.2^{11}}{2^8.2^3.3^3}=3\)
c) \(\frac{2^{10}.3^{31}+2^{40}.3^6}{2^{11}.3^{31}+2^{41}.3^6}=\frac{2^{10}.3^6.\left(3^{25}+2^{30}\right)}{2^{11}.3^6.\left(3^{25}+2^{30}\right)}=\frac{1}{2}\)
d) \(a.\left(-b\right).\left(-a\right)^2\left(-b\right)^3.\left(-a\right)^3.\left(-b\right)^4=-a^6b^8\)
a)Đặt \(E_n=n^3+3n^2+5n\)
- Với n=1 thì E1=9 chia hết 3
- Giả sử En đúng với \(n=k\ge1\) nghĩa là:
\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)
- Ta phải chứng minh Ek+1 chia hết 3,tức là:
Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3
Thật vậy:
Ek+1=(k+1)3+3(k+1)2+5(k+1)
=k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)
Theo giả thiết quy nạp thì Ek chia hết 3
ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3
=>Ek chia hết 3 với mọi \(n\in N\)*
a) Ta có:
\(\left|x+\frac{1}{2}\right|\ge0\Rightarrow-\left|x+\frac{1}{2}\right|\le0\Rightarrow3-\left|x+\frac{1}{2}\right|\le3\Rightarrow A\le3\)
b) b ở đâu thế bạn ?
a)Ta thấy:
\(-\left|x+\frac{1}{2}\right|\le0\)
\(\Rightarrow3-\left|x+\frac{1}{2}\right|\le3-0=3\)
\(\Rightarrow A\le3\)
Dấu "=" xảy ra khi \(-\left|x+\frac{1}{2}\right|=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy...