\(\frac{2sin^2\left(x+\frac{\pi}{4}\right)-1}{cotx-sinx.cosx}=2tan^2x\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 7 2019

a/ \(\frac{1-cos\left(2x+\frac{\pi}{2}\right)-1}{cosx\left(\frac{1}{sinx}-sinx\right)}=\frac{sin2x}{cosx\left(\frac{1-sin^2x}{sinx}\right)}=\frac{2sinx.cosx.sinx}{cosx.cos^2x}=\frac{2sin^2x}{cos^2x}=2tan^2x\)

b/ \(x^2+2x+2019=\left(x+1\right)^2+2018>0\) \(\forall x\)

\(-1\le\frac{x^2-2x-m}{x^2+2x+2019}\Leftrightarrow x^2-2x-m\ge-x^2-2x-2019\)

\(\Leftrightarrow2x^2\ge m-2019\) \(\forall x\)

\(\Rightarrow m-2019\le0\Rightarrow m\le2019\)

\(\frac{x^2-2x-m}{x^2+2x+2019}< 2\Leftrightarrow x^2-2x-m< 2x^2+4x+4038\)

\(\Leftrightarrow x^2-6x+9>-m-4029\)

\(\Leftrightarrow\left(x-3\right)^2>-m-4029\) \(\forall x\)

\(\Rightarrow-m-4029< 0\Rightarrow m>-4029\)

Vậy \(-4029< m\le2019\)

29 tháng 4 2020

\(a,\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4sin^2x.cos^2x}=-1\)

\(VT=\left(\frac{tan^2x-1}{2tanx}\right)^2-\frac{1}{4.sin^2x.cos^2x}=\left(\frac{1}{tan2x}\right)^2-\frac{1}{sin^22x}=\left(\frac{cos2x}{sin2x}\right)^2-\frac{1}{sin^22x}=\frac{cos^22x-1}{sin^22x}=\frac{-sin^22x}{sin^22x}=-1=VP\)

b, \(VT=\frac{cos^2x-sin^2x}{sin^4x+cos^4x-sin^2x}=\frac{cos2x}{\left(sin^2x+cos^2x\right)^2-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{1-sin^2x-2.sin^2x.cos^2x}=\frac{cos2x}{cos^2x-2.sin^2x.cos^2x}\)

=\(\frac{cos2x}{cos^2x.\left(1-2.sin^2x\right)}=\frac{cos2x}{cos^2x.cos2x}=\frac{1}{cos^2x}=1+tan^2x=VP\)

d, \(VT=\left(\frac{cosx}{1+sinx}+tanx\right).\left(\frac{sinx}{1+cosx}+cotx\right)=\left(\frac{cosx}{1+sinx}+\frac{sinx}{cosx}\right).\left(\frac{sinx}{1+cosx}+\frac{cosx}{sinx}\right)\)

\(=\left(\frac{cos^2x+sinx.\left(1+sinx\right)}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx.\left(1+cosx\right)}{sinx.\left(1+cosx\right)}\right)=\left(\frac{cos^2x+sinx+sin^2x}{cosx.\left(1+sinx\right)}\right).\left(\frac{sin^2x+cosx+cos^2x}{sinx.\left(1+cosx\right)}\right)\)

=\(\frac{1}{cosx.sinx}=VP\)

e, \(VT=cos^2x.\left(cos^2x+2sin^2x+sin^2x.tan^2x\right)=cos^2x.\left(1+sin^2x.\left(1+tan^2x\right)\right)=cos^2x.\left(1+tan^2x\right)=cos^2x.\frac{1}{cos^2x}=1=VP\)

c, \(VT=\frac{sin^2x}{cosx.\left(1+tanx\right)}-\frac{cos^2x}{sinx.\left(1+cosx\right)}=\frac{sin^3x.\left(1+cosx\right)-cos^3x.\left(1+tanx\right)}{sinx.cosx.\left(1+tanx\right).\left(1+cosx\right)}\)

=\(\frac{sin^3x+sin^3x.cotx-cos^3x-cos^3.tanx}{\left(sinx+cosx\right)^2}=\frac{sin^3x+sin^2xcosx-cos^3x-cos^2sinx}{\left(sinx+cosx\right)^2}=\frac{sin^2x.\left(sinx+cosx\right)-cos^2x.\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}\)

\(=\frac{\left(sin^2x-cos^2x\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=\frac{\left(sinx-cosx\right).\left(sinx+cosx\right).\left(sinx+cosx\right)}{\left(sinx+cosx\right)^2}=sinx-cosx=VP\)

Đây nha bạn

Mọi người giúp em giải bài này ạ, em cảm ơn Bài 1: Rút gọn biểu thức: A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\) B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\) C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\) D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos...
Đọc tiếp

Mọi người giúp em giải bài này ạ, em cảm ơn

Bài 1: Rút gọn biểu thức:

A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)

B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)

C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)

D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)

E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)

\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)

\(G=\frac{1+cos2a-cosa}{2sina-sina}\)

H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)

Bài 2: chứng minh

a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)

b) chứng minh biểu thức sau độc lập với biến x:

A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)

c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)

d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)

e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)

f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)

g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)

h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)

k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)

Bài 3: giải bất phương trình:

a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)

b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)

c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)

d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)

e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)

f)\(\frac{2x+1}{-x^2+x+6}\ge0\)

5
NV
1 tháng 5 2019

\(A=\frac{2sinx.cosx+sinx}{1+2cos^2x-1+cosx}=\frac{sinx\left(2cosx+1\right)}{cosx\left(2cosx+1\right)}=\frac{sinx}{cosx}=tanx\)

\(B=\frac{cosa}{sina}\left(\frac{1+sin^2a}{cosa}-cosa\right)=\frac{cosa}{sina}\left(\frac{1+sin^2a-cos^2a}{cosa}\right)=\frac{cosa}{sina}.\frac{2sin^2a}{cosa}=2sina\)

\(C=\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cos2x.cosx}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(D=\frac{2sinx.cosx.\left(-tanx\right)}{-tanx.sinx}-2cosx=2cosx-2cosx=0\)

NV
1 tháng 5 2019

\(E=cos^2x.cot^2x-cot^2x+cos^2x+2cos^2x+2sin^2x\)

\(E=cot^2x\left(cos^2x-1\right)+cos^2x+2=\frac{cos^2x}{sin^2x}\left(-sin^2x\right)+cos^2x+2=2\)

\(F=\frac{sin^2x\left(1+tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{sin^2x}{cos^2x}=tan^2x\)

Câu G mẫu số có gì đó sai sai, sao lại là \(2sina-sina?\)

\(H=sin^4\left(\frac{\pi}{2}+a\right)-cos^4\left(\frac{3\pi}{2}-a\right)+1=cos^4a-sin^4a+1\)

\(=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)+1=cos^2a-\left(1-cos^2a\right)+1=2cos^2a\)

Bài 1 : Chứng minh rằng a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\) b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\) Bài 2 : Chứng minh các biểu thức sau độc lập với biến x A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\) B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\) Bài 3 : Tính giá trị các biểu thức lượng giác A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2 B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6 Bài 4 : Tính...
Đọc tiếp

Bài 1 : Chứng minh rằng

a) \(\frac{1-sinx}{cosx}=\frac{cosx}{1+sinx}\)

b) \(\frac{tanx}{sinx}-\frac{sinx}{cotx}=cosx\)

Bài 2 : Chứng minh các biểu thức sau độc lập với biến x

A= \(\frac{cot^2x-cos^2x}{cot^2x}+\frac{sinxcosx}{cotx}\)

B= \(cos^4x+sin^2xcos^2x+sin^{2^{ }}x\)

Bài 3 : Tính giá trị các biểu thức lượng giác

A=\(\frac{5cosx+6tanx}{5cosx-6tanx}\) biết tanx=2

B= \(\frac{4sinxcosx-3cos^2x}{^{ }1+3sin^2x}\) biết cotx = -6

Bài 4 : Tính giá trị các biểu thức lượng giác

A= \(\frac{cotx}{cotx-tanx}\) biết sinx=\(\frac{3}{5}\) với \(0^o< x\le90^o\)

B= sina+cosa tana biết cosa=\(\frac{1}{2}\) với \(\frac{3\pi}{2}< a< 2\pi\)

Bài 5 : Tính giá trị lượng giác còn lại của góc 2a nếu :

a) cos2\(\alpha\) = \(\frac{2}{5}\) biết \(0< \alpha< \frac{\pi}{4}\)

b) sin2\(\alpha\) = \(\frac{24}{25}\) biết \(\frac{-3\pi}{4}\le\alpha\le-\frac{\pi}{2}\)

7
4 tháng 5 2020

cos đó bạn

AH
Akai Haruma
Giáo viên
4 tháng 5 2020

Lời giải:

a)

\(\cos 2a=\frac{2}{5}\Rightarrow \sin ^22a=1-(\cos 2a)^2=1-(\frac{2}{5})^2=\frac{21}{25}\)

Vì $a\in (0; \frac{\pi}{4})\Rightarrow 2a\in (0; \frac{\pi}{2})$

$\Rightarrow \sin 2a>0\Rightarrow \sin 2a=\frac{\sqrt{21}}{5}$

$\tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{\sqrt{21}}{5.\frac{2}{5}}=\frac{\sqrt{21}}{2}$

$\cot 2a=\frac{1}{\tan 2a}=\frac{2}{\sqrt{21}}$

-------------------------

$\sin 2a=\frac{24}{25}\Rightarrow \cos ^22a=1-(\sin 2a)^2=\frac{49}{625}$

$a\in [\frac{-3}{4}\pi; \frac{-\pi}{2}]\Rightarrow 2a\in [\frac{-3}{2}\pi ; -\pi]\Rightarrow \cos 2a< 0$

$\Rightarrow \cos 2a=\frac{-7}{25}$

$\Rightarrow \tan 2a=\frac{\sin 2a}{\cos 2a}=\frac{24}{25.\frac{-7}{25}}=\frac{-24}{7}$

$\Rightarrow \cot 2a=\frac{-7}{24}$

NV
18 tháng 2 2020

b/ \(\Leftrightarrow-4< \frac{-2x^2-mx+4}{x^2-x+1}< 6\)

Do \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x nên BPT tương đương:

\(-4\left(x^2-x+1\right)< -2x^2-mx+4< 6\left(x^2-x+1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-\left(m+4\right)x+8>0\\8x^2+\left(m-6\right)x+2>0\end{matrix}\right.\)

Cả 2 BPT đều đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}\Delta_1=\left(m+4\right)^2-64< 0\\\Delta_2=\left(m-6\right)^2-64< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2+8m-48< 0\\m^2-12m-28< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-12< m< 4\\-2< m< 14\end{matrix}\right.\) \(\Rightarrow-2< m< 4\)

NV
18 tháng 2 2020

c/ Do \(2x^2-3x+2=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}>0\) với mọi x, BPT tương đương:

\(-\left(2x^2-3x+2\right)\le x^2+5x+m< 7\left(2x^2-3x+2\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+5x+m\ge-2x^2+3x-2\\14x^2-21x+14>x^2+5x+m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x^2+2x+m+2\ge0\\13x^2-26x-m+14>0\end{matrix}\right.\)

Để 2 BPT đều đúng với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}4-12\left(m+2\right)\le0\\13^2-13\left(-m+14\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-20\le12m\\-13+13m< 0\end{matrix}\right.\) \(\Rightarrow-\frac{5}{3}\le m< 1\)

NV
10 tháng 6 2020

\(\frac{1-2sin^2x}{1-tanx}=\frac{cosx\left(1-2sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cos^2x-sin^2x\right)}{cosx-sinx}=\frac{cosx\left(cosx+sinx\right)\left(cosx-sinx\right)}{cosx-sinx}\)

\(=cosx\left(cosx+sinx\right)=\frac{cosx\left(cosx+sinx\right)^2}{cosx+sinx}=\frac{cos^2x+sin^2x+2sinx.cosx}{1+\frac{sinx}{cosx}}=\frac{1+sin2x}{1+tanx}\)

\(\frac{x}{2}=a\Rightarrow\frac{cot^2a-cot^23a}{cos^2a.cos2a\left(1+cot^23a\right)}=\frac{sin^23a\left(cot^2a-cot^23a\right)}{cos^2a.cos2a}=\frac{sin^23a.cot^2a-cos^23a}{cos^2a.cos2a}\)

\(=\frac{sin^23a.cos^2a-cos^23a.sin^2a}{sin^2a.cos^2a.cos2a}=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{sin^2a.cos^2a.cos2a}\)

\(=\frac{sin\left(3a-a\right).sin\left(3a+a\right)}{sin^2a.cos^2a.cos2a}=\frac{sin2a.sin4a}{sin^2a.cos^2a.cos2a}=\frac{2sina.cosa.4sina.cosa.cos2a}{sin^2a.cos^2a.cos2a}\)

\(=\frac{8sin^2a.cos^2a.cos2a}{sin^2a.cos^2a.cos2a}=8\)

\(sin\left(a+b+a\right)=5sin\left(a+b-a\right)\)

\(\Leftrightarrow sin\left(a+b\right)cosa+cos\left(a+b\right).sina=5sin\left(a+b\right).cosa-5cos\left(a+b\right).sina\)

\(\Leftrightarrow6cos\left(a+b\right).sina=4sin\left(a+b\right).cosa\)

\(\Leftrightarrow\frac{2sin\left(a+b\right)cosa}{cos\left(a+b\right)sina}=3\Leftrightarrow\frac{2tan\left(a+b\right)}{tana}=3\)

NV
1 tháng 6 2020

\(\frac{1+sin^2x}{1-sin^2x}=\frac{1+sin^2x}{cos^2x}=\frac{1}{cos^2x}+\frac{sin^2x}{cos^2x}=1+tan^2x+tan^2x=1+2tan^2x\)

\(\frac{sin^3a-cos^3a}{sina-cosa}-sina.cosa=\frac{\left(sina-cosa\right)\left(sin^2a+cos^2a+sina.cosa\right)}{sina-cosa}-sina.cosa\)

\(=sin^2a+cos^2a+sina.cosa-sina.cosa=1\)

\(\frac{1+cos2x+cosx+cos3x}{2cos^2x-1+cosx}=\frac{1+2cos^2x-1+2cosx.cos2x}{cos2x+cosx}=\frac{2cosx\left(cosx+cos2x\right)}{cos2x+cosx}=2cosx\)

\(\frac{1-2sin^2a}{cosa+sina}+\frac{2cos^2a-1}{cosa-sina}=\frac{cos^2a-sin^2a}{cosa+sina}+\frac{cos^2a-sin^2a}{cosa-sina}\)

\(=\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa+sina}+\frac{\left(cosa+sina\right)\left(cosa-sina\right)}{cosa-sina}=cosa-sina+cosa+sina=2cosa\)

\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)

NV
20 tháng 4 2019

\(\frac{1-cosx+cos2x}{sin2x-sinx}=\frac{1-cosx+2cos^2x-1}{2sinx.cosx-sinx}=\frac{cosx\left(2cosx-1\right)}{sinx\left(2cosx-1\right)}=\frac{cosx}{sinx}=cotx\)

\(A=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{2}-\frac{\pi}{4}+x\right)=sin\left(\frac{\pi}{4}+x\right)-sin\left(\frac{\pi}{4}+x\right)=0\)