Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)Đk:\(x\ge\frac{3}{2}\)
\(pt\Leftrightarrow3-x=-\sqrt{2x-3}\)
Bình phương 2 vế ta có:
\(\left(3-x\right)^2=\left(-\sqrt{2x-3}\right)^2\)
\(\Leftrightarrow x^2-6x+9=2x-3\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=6\end{array}\right.\).Thay vào thấy x=2 ko thỏa mãn
Vậy x=6
b)Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
Bình phương 2 vế của pt ta có:
\(\left(\sqrt{x-1}\right)^2=\left(\sqrt{3x-2}+\sqrt{5x-1}\right)^2\)
\(\Leftrightarrow x-1=\left(3x-2\right)+\left(5x-1\right)+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow2-7x=2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
Bình phương 2 vế của pt ta có:
\(\left(2-7x\right)^2=\left[2\sqrt{\left(3x-2\right)\left(5x-1\right)}\right]^2\)
\(\Leftrightarrow49x^2-28x+4=60x^2-52x+8\)
\(\Leftrightarrow-11x^2+24x-4=0\)
\(\Leftrightarrow\left(2-x\right)\left(11x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{11}\end{array}\right.\) (Loại)
Vậy pt vô nghiệm
a, \(\sqrt{8}+\sqrt{18}-\sqrt{\frac{1}{2}}=2\sqrt{2}+3\sqrt{2}-\frac{1}{2}\sqrt{2}\)
\(=\frac{9}{2}\sqrt{2}\)
b, \(\frac{3-\sqrt{3}}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)
\(=\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}}+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\sqrt{3}-1+\frac{2\sqrt{2}}{\sqrt{2}+1}-\sqrt{2}-\sqrt{3}\)
\(=\frac{2\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+1\right)\) \(=\frac{2\sqrt{2}-\left(\sqrt{2}+1\right)^2}{\sqrt{2}+1}\)
\(=\frac{2\sqrt{2}-2-2\sqrt{2}-1}{\sqrt{2}+1}=-\frac{2+1}{\sqrt{2}+1}\)
c, PT xác định với mọi x nha!
\(\sqrt{x^2-2x+1}=3\) \(\Rightarrow x^2-2x+1=9\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow\left(x^2-4x\right)+\left(2x-8\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)
Vậy...
bạn tự kl
Câu 6:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-2\sqrt{x-1}+1}-\sqrt{x-1}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-1)^2}=\sqrt{x-1}+1$
$\Leftrightarrow |\sqrt{x-1}-1|=\sqrt{x-1}+1$
Nếu $\sqrt{x-1}-1\geq 0$ thì PT trở thành:
$\sqrt{x-1}-1=\sqrt{x-1}+1\Leftrightarrow 2=0$ (vô lý)
Nếu $\sqrt{x-1}-1< 0$ (tương đương với $1\leq x< 2$ thì PT trở thành:
$1-\sqrt{x-1}=\sqrt{x-1}+1$
$\Leftrightarrow \sqrt{x-1}=0\Rightarrow x=1$ (thỏa mãn)
Vậy PT có nghiệm $x=1$
Câu 5:
ĐK: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)-4\sqrt{x-1}+4}+\sqrt{(x-1)-6\sqrt{x-1}+9}=1$
$\Leftrightarrow \sqrt{(\sqrt{x-1}-2)^2}+\sqrt{(\sqrt{x-1}-3)^2}=1$
$\Leftrightarrow |\sqrt{x-1}-2|+|\sqrt{x-1}-3|=1$
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|\sqrt{x-1}-2|+|\sqrt{x-1}-3|=|\sqrt{x-1}-2|+|3-\sqrt{x-1}|\geq |\sqrt{x-1}-2+3-\sqrt{x-1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x-1}-2)(3-\sqrt{x-1})\geq 0$
$\Leftrightarrow 3\geq \sqrt{x-1}\geq 2$
$\Leftrightarrow 10\geq x\geq 5$. Kết hợp ĐKXĐ ta thấy những giá trị $x$ thỏa mãn $10\geq x\geq 5$ là nghiệm của pt.
Dk: x\(\ge0\)
lien hop
\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)
\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)
6.
Đặt \(\left\{{}\begin{matrix}\sqrt{5x^2+6x+5}=a\\4x=b\end{matrix}\right.\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\)
\(\Leftrightarrow a^3-b^3+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{5x^2+6x+5}=4x\left(x\ge0\right)\)
\(\Leftrightarrow5x^2+6x+5=16x^2\)
\(\Leftrightarrow11x^2-6x-5=0\)
\(\Rightarrow x=1\)
4. Bạn coi lại đề (chính xác là pt này ko có nghiệm thực)
5.
\(\Leftrightarrow x^2+x+6-\left(2x+1\right)\sqrt{x^2+x+6}+6x-6=0\)
Đặt \(\sqrt{x^2+x+6}=t>0\)
\(t^2-\left(2x+1\right)t+6x-6=0\)
\(\Delta=\left(2x+1\right)^2-4\left(6x-6\right)=\left(2x-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{2x+1+2x-5}{2}=2x-2\\t=\frac{2x+1-2x+5}{2}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+6}=2x-2\left(x\ge1\right)\\\sqrt{x^2+x+6}=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+6=4x^2-8x+4\left(x\ge1\right)\\x^2+x+6=9\end{matrix}\right.\)