Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Ta có: \(A=\frac{\sqrt{x}+7}{\sqrt{x}+4}=\frac{\left(\sqrt{x}+4\right)+3}{\sqrt{x}+4}=1+\frac{3}{\sqrt{x}+4}\)
a) Vì \(\sqrt{x}+4\ge4>3\left(\forall x\right)\)
\(\Rightarrow\frac{3}{\sqrt{x}+4}\) luôn không nguyên
=> A luôn không nguyên
b) Không thể tìm được giá trị nhỏ nhất của A, ta chỉ có thể tìm được GTLN:
\(\sqrt{x}+4\ge4\left(\forall x\right)\)
\(\Rightarrow\frac{3}{\sqrt{x}+4}\le\frac{3}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max(A) = 7/4 khi x = 0
\(A=\sqrt{x^2-6x+9+2\left(y^2+2y+1\right)}+\sqrt{x^2+2x+1+3\left(y^2+2y+1\right)}.\)
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
Với mọi giá trị được xác định của x; giá trị của biến y không phụ thuộc vào x, ta luôn có:
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\le\sqrt{\left(x-3\right)^2}+\sqrt{\left(x+1\right)^2}\)(1)
Dấu "=" khi y = -1.
(1) \(\Rightarrow A\le\left|x-3\right|+\left|x+1\right|\)(2)
- \(x< -1\)(2) \(\Rightarrow A\le-\left(x-3\right)-\left(x+1\right)=-2x+2>4\forall x< -1\)
- \(-1\le x\le3\)(2) \(\Rightarrow A\le-\left(x-3\right)+\left(x+1\right)=4\forall-1\le x\le3\)
- \(x>3\)(2) \(\Rightarrow A\le\left(x-3\right)+\left(x+1\right)=2x-2>4\forall x>3\)
Vậy GTNN của A = 4 khi -1<= x <= 3 và y = -1.
ĐK: `x-4>=0 <=>x>=4`
`\sqrt(x-4)>=0 forall x`
`<=>\sqrt(x-4)-2>=-2`
`=> (\sqrt(x-4)-2)_(min) =-2<=> x=4`