Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)
\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)
\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)
\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)
\(2\left(1+abc\right)+\sqrt{2\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}.\)
\(=2\left(1+abc\right)+\sqrt{\left[\left(a+1\right)^2+\left(1-a\right)^2\right]\left[\left(b+c\right)^2+\left(bc-1\right)^2\right]}\)
\(\ge2\left(1+abc\right)+\left(a+1\right)\left(b+c\right)+\left(1-a\right)\left(bc-1\right)\)
\(=\left(1+a\right)\left(1+b\right)\left(1+c\right)\)