Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)
b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)
Bài 2 :
a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)
b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)
c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)
Bài 3 :
a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)
=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)
= \(\sqrt{5}-2-\sqrt{5}\)
= -2 = VP
b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)
= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)
= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)
=\(\sqrt{7}+4-\sqrt{7}\)
= 4 =VP
c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
VT = \(16-8\sqrt{7}+7\)
= 23 - \(8\sqrt{7}\) = VP
Bài 4:
a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)
Tương tự
Bài 5 :
a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)
=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1
=> x+3 = 3x-1
+) x+3 =3x-1 => x= 2
+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)
b)+c) Tương tự
2.1
\(A=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5.1}+1}-\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{5}+1)^2}-\sqrt{(\sqrt{5}-1)^2}=|\sqrt{5}+1|-|\sqrt{5}-1|=2\)
2.2
\(B\sqrt{2}=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{3+2\sqrt{3.5}+5}+\sqrt{3-2\sqrt{3.5}+5}-2\sqrt{5-2\sqrt{5.1}+1}\)
\(=\sqrt{(\sqrt{3}+\sqrt{5})^2}+\sqrt{(\sqrt{3}-\sqrt{5})^2}-2\sqrt{(\sqrt{5}-1)^2}\)
\(=|\sqrt{3}+\sqrt{5}|+|\sqrt{3}-\sqrt{5}|-2|\sqrt{5}-1|=2\)
$\Rightarrow B=\sqrt{2}$
Bài 1:
1. ĐKXĐ: \(\left\{\begin{matrix} 2x-1\geq 0\\ x-3\geq 0\\ 5-x>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x\geq 3\\ x< 5\end{matrix}\right.\Leftrightarrow 3\leq x< 5\)
2.
ĐKXĐ: \(\left\{\begin{matrix} x-1\geq 0\\ 2-x\geq 0\\ x+1>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\leq 2\\ x>-1\end{matrix}\right.\Leftrightarrow 1\leq x\leq 2\)
\(a\sqrt{b}-b\sqrt{a}=\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)\)
\(7\sqrt{7}+3\sqrt{3}=\left(\sqrt{7}+\sqrt{3}\right)\left(7-\sqrt{21}+3\right)=\left(\sqrt{7}+\sqrt{3}\right)\left(10-\sqrt{21}\right)\)
\(a\sqrt{a}-b\sqrt{b}=\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)\)
\(1-a\sqrt{a}=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)\)
\(x^2-\sqrt{x}=\sqrt{x}\left(x\sqrt{x}-1\right)=\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
\(\left(\sqrt{2}+1\right)^2-4\sqrt{2}=\left(\sqrt{2}-1\right)^2\)
\(\left(\sqrt{5}+2\right)^2-8\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
2 cái trên đều áp dụng HĐT \(\left(a+b\right)^2-4ab=\left(a-b\right)^2\)
\(5\sqrt{2}-2\sqrt{5}=\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)\)
1) ta có : \(x\sqrt{x}+\sqrt{x}-x-1=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)
\(=\left(\sqrt{x}-1\right)\left(x+1\right)\)
2) ta có : \(\sqrt{ab}-\sqrt{a}-\sqrt{b}+1=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)
\(=\left(\sqrt{a}-1\right)\left(\sqrt{b}-1\right)\)
3) ta có : \(x-\sqrt{x}-2=x+\sqrt{x}-2\sqrt{x}-2\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\left(\sqrt{x}+1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
4) ta có : \(x-3\sqrt{x}+2=x-\sqrt{x}-2\sqrt{x}+2\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)\)
5) ta có : \(-6x+5\sqrt{x}+1=-6x+6\sqrt{x}-\sqrt{x}+1\)
\(=6\sqrt{x}\left(1-\sqrt{x}\right)+\left(1-\sqrt{x}\right)=\left(6\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\)
6) ta có : \(x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)
7) ta có : \(3\sqrt{a}-2a-1=-2a+2\sqrt{a}+\sqrt{a}-1\)
\(=-2\sqrt{a}\left(\sqrt{a}-1\right)+\left(\sqrt{a}-1\right)=\left(1-2\sqrt{a}\right)\left(\sqrt{a}-1\right)\)
8) ta có : \(x+2\sqrt{x-1}=x-1+2\sqrt{x-1}+1\)
\(=\left(\sqrt{x-1}+1\right)^2\)
9) ta có : \(7\sqrt{x}-6x-2=-6x+3\sqrt{x}+4\sqrt{x}-2\)
\(=-3\sqrt{x}\left(2\sqrt{x}-1\right)+2\left(2\sqrt{x}-1\right)=\left(2-3\sqrt{x}\right)\left(2\sqrt{x}-1\right)\)
10) ta có : \(x-5\sqrt{x}+6=x-2\sqrt{x}-3\sqrt{x}+6\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)\)
11) ta có : \(x-2+\sqrt{x^2-4}=\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-2\right)\left(x+2\right)}\)
\(=\sqrt{x-2}\left(\sqrt{x-2}+\sqrt{x+2}\right)\)
1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1
Bài 1:
a)Đk:\(x\ge\frac{3}{2}\)
\(pt\Leftrightarrow3-x=-\sqrt{2x-3}\)
Bình phương 2 vế ta có:
\(\left(3-x\right)^2=\left(-\sqrt{2x-3}\right)^2\)
\(\Leftrightarrow x^2-6x+9=2x-3\)
\(\Leftrightarrow x^2-8x+12=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=6\end{array}\right.\).Thay vào thấy x=2 ko thỏa mãn
Vậy x=6
b)Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
Bình phương 2 vế của pt ta có:
\(\left(\sqrt{x-1}\right)^2=\left(\sqrt{3x-2}+\sqrt{5x-1}\right)^2\)
\(\Leftrightarrow x-1=\left(3x-2\right)+\left(5x-1\right)+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow2-7x=2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
Bình phương 2 vế của pt ta có:
\(\left(2-7x\right)^2=\left[2\sqrt{\left(3x-2\right)\left(5x-1\right)}\right]^2\)
\(\Leftrightarrow49x^2-28x+4=60x^2-52x+8\)
\(\Leftrightarrow-11x^2+24x-4=0\)
\(\Leftrightarrow\left(2-x\right)\left(11x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{11}\end{array}\right.\) (Loại)
Vậy pt vô nghiệm