Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)
a)thay \(x=2\sqrt{2}\)vào a ra có
\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)
\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)
Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)
bài 1
a) ĐKXĐ : bạn tự tìm nhé
b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
=\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
=\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)
=\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))
=\(2\sqrt{x^2-1}\)
a) Biểu thức có nghĩa khi
\(1-4x^2\ge0\)
\(\Leftrightarrow1\ge4x^2\)
\(\Leftrightarrow4x^2\le1\)
\(\Leftrightarrow\sqrt{4x^2}\le\sqrt{1}\)
\(\Leftrightarrow\)/2x/ nhỏ hơn hoặc bằng 1 ("/" là dấu trị tuyệt đối)
\(\Leftrightarrow-1\le2x\le1\)
b. Biểu thức có nghĩa khi \(x^2-x+1\ge0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)
Luôn đúng với mọi x thuộc R
c. Biểu thức có nghĩa khi \(4x-x^2-5\ge0\)
\(\Leftrightarrow-x^2+4x-4-1\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2-1\ge0\)
\(\Leftrightarrow-\left(x-2\right)^2\ge1\)(vô lý)
Suy ra không có giá trị nào của x để biểu thức xác định
em hổng có biết đâu vì em chưa hc lp 9 mới lại đề bài dài kinh khủng
a) \(x\ne\sqrt{3};x\ne-\sqrt{3}\)
b)\(x\ne3;x\ne-1\)
c)\(x\ne0;x\ne-2\)
d)\(x\ne3;x\ne2\)
a: ĐKXĐ: 5-4x>=0
=>x<=5/4
b: ĐKXĐ: x thuộc R
c: ĐKXĐ: x-2<0
=>x<2
\(a,ĐK:5-4x\ge0\\ \Rightarrow x\le\dfrac{5}{4}\\ b,ĐK:\left(x+1\right)^2\ge0\left(lđ\right)\)
\(\Rightarrow\) Với mọt giá trị của x
\(c,ĐK:\dfrac{-1}{x-2}\ge0\)
Vì \(-1< 0\)
\(\Rightarrow x-2< 0\)
\(\Rightarrow x< 2\)