Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}\)
\(\Leftrightarrow A< \sqrt{25}=5\)(1)
\(B< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}\)
\(\Leftrightarrow B< \sqrt[3]{27}=3\)(2)
Từ (1) và (2) suy ra A+B<5+3=8
Ta có:
\(A>\sqrt{19,36}=4,4\)(3)
\(B>\sqrt[3]{17,576}=2,6\)(4)
Từ (3) và (4) suy ra A+B>4,4+2,6=7
Vậy 7<A+B<8
a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)
=>A^3-3A-18=0
=>A=3
b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)
=>B^3-3B-14=0
=>B=2,82
c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)
=>C^3+6C-40=0
=>C=2,84
\(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\Leftrightarrow A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\Leftrightarrow A^3=4+3\sqrt[3]{-1}.A\Leftrightarrow A^3=4-3A\Leftrightarrow A^3+3A-4=0\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)(1)
Ta có \(A^2+A+4>0\)
Vậy (1)\(\Leftrightarrow A-1=0\Leftrightarrow A=1\)
Vậy A=1
\(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Leftrightarrow B^3=5\sqrt{2}+7-5\sqrt{2}+7-3\sqrt[3]{\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)}\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)\Leftrightarrow B^3=14-3\sqrt[3]{1}.B\Leftrightarrow B^3=14-3B\Leftrightarrow B^3+3B-14=0\Leftrightarrow\left(B-2\right)\left(B^2+2B+7\right)=0\left(2\right)\)
Ta lại có \(B^2+2B+7>0\)
Vậy (2)\(\Leftrightarrow B-2=0\Leftrightarrow B=2\)
Vậy B=2
\(C=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.\left(\sqrt{2}\right)^2.2+3.\sqrt{2}.4+8}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.\left(\sqrt{2}\right)^2.2+3.\sqrt{2}.4-8}=\sqrt[3]{\left(\sqrt{2}+2\right)^2}-\sqrt[3]{\left(\sqrt{2}-2\right)}=\sqrt{2}+2-\sqrt{2}+2=4\)
a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
=> \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)
\(=20+14\sqrt{2}+20-14\sqrt{2}\)
\(+3\left(\text{}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)
\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)
\(\Rightarrow A^3=40+3.A.2\)
=> \(A^3-6A-40=0\)
<=> \(A^3-16A+10A-40=0\)
<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)
<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)
<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))
Vậy A = 4.
b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)
\(=26+15\sqrt{3}-26+15\sqrt{3}\)
\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)
\(=30\sqrt{3}-3B.1\)
=> \(B^3+3B-30\sqrt{3}=0\)
<=> \(B^3-12B+15B-30\sqrt{3}=0\)
<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)
<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)
<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))
<=> \(B=2\sqrt{3}\)
a)\(\sqrt{\dfrac{4}{9-4\sqrt{5}}}-\sqrt{\dfrac{4}{9+4\sqrt{5}}} \Leftrightarrow \dfrac{\sqrt{4}}{\sqrt{(2-\sqrt{5}})^{2}}-\dfrac{\sqrt{4}}{(2+\sqrt{5})^{2}} \Leftrightarrow \dfrac{2(2+\sqrt{5})}{(\sqrt{5}-2)(2+\sqrt{5})}-\dfrac{2(\sqrt{5}-2)}{(\sqrt{5}-2)(2+\sqrt{5})} \Leftrightarrow \dfrac{4+2\sqrt{5}-(2\sqrt{5}-4)}{4-5} \Leftrightarrow \dfrac{8}{-1} = -8\)b)\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}} =\dfrac{\sqrt{2}\sqrt{8-4\sqrt{3}}}{\sqrt{2}\sqrt{2}} =\dfrac{\sqrt{16-8\sqrt{3}}}{2} =\dfrac{\sqrt{(2-2\sqrt{3})^{2}}}{2} =\dfrac{2\sqrt{3}-2}{2} =\dfrac{2(\sqrt{3}-1)}{2} =\sqrt{3}-1\)c)\(\sqrt{14-8\sqrt{3}}-\sqrt{24-12\sqrt{3}} =\sqrt{2}\sqrt{7-4\sqrt{3}}-\sqrt{2}\sqrt{12+6\sqrt{3}} =\sqrt{2}(\sqrt{(4-\sqrt{3})^{2}}-\sqrt{(3+\sqrt{3})^{2}}) =\sqrt{2}((4-\sqrt{3})-(3+\sqrt{3})) =\sqrt{2}(1-2\sqrt{3}) =\sqrt{2}-2\sqrt{6}\)
a/ \(\sqrt{2}+\sqrt{6}\)
b/ Sửa đề:
\(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}=1\)
c/ \(1+\sqrt{2}+\sqrt{5}\)
a/ \(\sqrt{14-3\sqrt{20}}=\sqrt{5+9-3\sqrt{4.5}}=\sqrt{5-2.3\sqrt{5}+9}=\sqrt{\left(\sqrt{5}-3\right)^2}=\)
\(=3-\sqrt{5}\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)