
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Ta có: \(\left(a-b\right)^2\ge0\forall a;b\) và ab>0 (theo đề bài)
=>\(\frac{\left(a-b\right)^2}{ab}\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{a^2}{ab}-\frac{2ab}{ab}+\frac{b^2}{ab}\ge0\)
\(\Leftrightarrow\frac{a}{b}-2+\frac{b}{a}\ge0\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\) (đpcm)

\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge2ab+2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\) (đpcm)
Ta có : với a,b>0 theo bđt Cô si: a+b\(\ge\)\(2\sqrt{ab}\)
=> (a+b)\(^2\)\(\ge\)4ab
nhớ k mình nha ^^

Bạn kia sai rồi
x > 0 ; y > 0 thì chưa chắc \(x\ge1;y\ge1\) được
Mình giải các bạn tham khảo nhé :
\(A=\left(x+1\right)\left(y+1\right)=x\left(y+1\right)+\left(y+1\right)=xy+x+y+1\)
\(=1+x+y+1=2+x+y\)
Ta lại có : \(x+y\ge2\sqrt{xy}=2.1=2\) ( bất đẳng thức cosi )
Dấu "=" xảy ra <=> \(x=y\)
\(\Rightarrow2+x+y\ge2+2=4\)
\(\Rightarrow A\ge4\) (Đpcm)