K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2015

a) (x^2+2xy+y^2) : (x+y)

=(x+y)2:(x+y)

=x+y

b) (125x^3+1) : (5x+1)

=(5x+1)(25x2-5x+1):(5x+1)

=25x2-5x+1

 

c) (x^2-2xy+y^2) : (y-x)

=(x-y)2:(y-x)

=-(x-y)2:(x-y)

=-(x-y)

=-x+y

5 tháng 8 2020

a, (y-x^2)^2:(y-x^2) =y-x^2

b, (x-y^2)^2:(y-x^2)=x-y^2

học tốt

5 tháng 8 2020

Bài làm:

a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)

\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)

\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)

\(=y-x^2\)

b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)

\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)

\(=x-y^2\)

3 tháng 7 2021

Thay x=-8 và y=6 cào C ta được:

\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)

3 tháng 7 2021

\(C=x^2\left(\dfrac{x}{2}+\dfrac{y}{4}\right)+y^2\left(\dfrac{x}{6}+\dfrac{y}{27}\right)=\left(-8\right)^2\left(-\dfrac{8}{2}+\dfrac{6}{4}\right)+6^2\left(-\dfrac{8}{6}+\dfrac{6}{27}\right)=-200\)

13 tháng 8 2020

a) ( 2x + 5 )2 - ( 2x - 5 )2

= [ 2x + 5 + ( 2x - 5 ) ][ 2x + 5 - ( 2x - 5 ) ]

= [ 2x + 5 + 2x - 5 ][ 2x + 5 - 2x + 5 ]

= 4x.10 = 40x

b) ( 4x - 1 )2 - ( x - 1 )( x + 1 )

= 16x2 - 8x + 1 - ( x2 - 1 )

= 16x2 - 8x + 1 - x2 + 1

= 15x2 - 8x + 2 

d) ( x + 2 )( x - 2 ) - 2( x2 + 4 ) - ( x2 - 1 )( x2 + 1 )

= x2 - 4 - 2x2 - 8 - ( x4 - 1 )

= x2 - 4 - 2x2 - 8 - x4 + 1

= -x4 - x2 - 11

e) ( 2x + 3 )3 = 8x3 + 362 + 54x + 27

f) ( x2 + 2y )3 = x6 + 6x4y + 12x2y2 + 8y3

g) ( x2 - y/2 )3 = ( x2 - 1/2y )3 

                       = x6 - 3/2x4y + 3/4x2y2 - 1/8y3

Cái chỗ kq phần b) sao đang 16x xuống dưới lại 15x ạ?

27 tháng 6 2019

(x+2y)(2y-x) =(2y+x)(2y-x)

                     =(2y)\(^2\)-x\(^2\)

                     =4y\(^2\)   -x\(^2\)

(\(\frac{1}{2}\)-3x)(\(\frac{1}{2}\)+3x)=(\(\frac{1}{2}\))\(^2\)-(3x)\(^2\)

                                   =\(\frac{1}{4}\)-9x\(^2\)

Kết quả: \(\frac{1}{4}-9x^2\)

9 tháng 8 2015

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)

30 tháng 6 2019

1) x2 + 7y2 - 4xy - 2x - 2y + 4 = 0

\(\Leftrightarrow\)[ x2 - 2x.( 2y + 1 ) + 4y2 + 4y +1 ] - 4y2 - 4y - 1 + 7y- 2y +4 = 0

\(\Leftrightarrow\) [ x2 - 2x.( 2y +1 ) + ( 2y +1 )2 ] + 3y2 - 6y +3 = 0

\(\Leftrightarrow\) ( x - 2y - 1 )2 + 3.( y2 - 2y + 1 ) = 0

\(\Leftrightarrow\)( x - 2y - 1 )2 + 3.( y - 1 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2y-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-2y-1=0\\y-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=2y+1\\y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)

Vậy x = 3 , y = 1 thì x2 + 7y2 - 4xy - 2x - 2y + 4 = 0

2) 11x2 + y2 - 6xy - 14x + 2y +9 = 0

\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + 9x2 - 6x +1 ] + 2x2 - 8x + 8 = 0

\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + ( 3x - 1 )2 ] + 2.( x2 - 4x + 4 ) = 0

\(\Leftrightarrow\)( y - 3x + 1 )2 + 2.( x - 2 )2 = 0

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(y-3x+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y-3x+1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=3x-1\\x=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=5\\x=2\end{cases}}\)

Vậy x = 2 , y = 5 thì 11x2 + y2 - 6xy - 14x + 2y + 9 = 0

30 tháng 6 2019

Cảm ơn bạn

29 tháng 9 2016

\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)