Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x^2+2xy+y^2) : (x+y)
=(x+y)2:(x+y)
=x+y
b) (125x^3+1) : (5x+1)
=(5x+1)(25x2-5x+1):(5x+1)
=25x2-5x+1
c) (x^2-2xy+y^2) : (y-x)
=(x-y)2:(y-x)
=-(x-y)2:(x-y)
=-(x-y)
=-x+y
Bài làm:
a) \(\left(x^4-2x^2y+y^2\right)\div\left(y-x^2\right)\)
\(=\left(x^2-y\right)^2\div\left(y-x^2\right)\)
\(=\left(y-x^2\right)^2\div\left(y-x^2\right)\)
\(=y-x^2\)
b) \(\left(x^2-2xy^2+y^4\right)\div\left(x-y^2\right)\)
\(=\left(x-y^2\right)^2\div\left(x-y^2\right)\)
\(=x-y^2\)
Thay x=-8 và y=6 cào C ta được:
\(C=\dfrac{\left(-8\right)^3}{2}+\dfrac{\left(-8\right)^2.6}{4}+\dfrac{\left(-8\right).6^2}{6}+\dfrac{6^3}{27}\)\(=\dfrac{-512}{2}+\dfrac{384}{4}-\dfrac{288}{6}+\dfrac{216}{27}\)\(=-256+96-48+8=-200\)
a) ( 2x + 5 )2 - ( 2x - 5 )2
= [ 2x + 5 + ( 2x - 5 ) ][ 2x + 5 - ( 2x - 5 ) ]
= [ 2x + 5 + 2x - 5 ][ 2x + 5 - 2x + 5 ]
= 4x.10 = 40x
b) ( 4x - 1 )2 - ( x - 1 )( x + 1 )
= 16x2 - 8x + 1 - ( x2 - 1 )
= 16x2 - 8x + 1 - x2 + 1
= 15x2 - 8x + 2
d) ( x + 2 )( x - 2 ) - 2( x2 + 4 ) - ( x2 - 1 )( x2 + 1 )
= x2 - 4 - 2x2 - 8 - ( x4 - 1 )
= x2 - 4 - 2x2 - 8 - x4 + 1
= -x4 - x2 - 11
e) ( 2x + 3 )3 = 8x3 + 362 + 54x + 27
f) ( x2 + 2y )3 = x6 + 6x4y + 12x2y2 + 8y3
g) ( x2 - y/2 )3 = ( x2 - 1/2y )3
= x6 - 3/2x4y + 3/4x2y2 - 1/8y3
Cái chỗ kq phần b) sao đang 16x xuống dưới lại 15x ạ?
(x+2y)(2y-x) =(2y+x)(2y-x)
=(2y)\(^2\)-x\(^2\)
=4y\(^2\) -x\(^2\)
(\(\frac{1}{2}\)-3x)(\(\frac{1}{2}\)+3x)=(\(\frac{1}{2}\))\(^2\)-(3x)\(^2\)
=\(\frac{1}{4}\)-9x\(^2\)
\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)
\(\Leftrightarrow y=-1\text{ và }x=0\)
\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)
\(\Leftrightarrow x=1\text{ và }y=-1\)
1) x2 + 7y2 - 4xy - 2x - 2y + 4 = 0
\(\Leftrightarrow\)[ x2 - 2x.( 2y + 1 ) + 4y2 + 4y +1 ] - 4y2 - 4y - 1 + 7y2 - 2y +4 = 0
\(\Leftrightarrow\) [ x2 - 2x.( 2y +1 ) + ( 2y +1 )2 ] + 3y2 - 6y +3 = 0
\(\Leftrightarrow\) ( x - 2y - 1 )2 + 3.( y2 - 2y + 1 ) = 0
\(\Leftrightarrow\)( x - 2y - 1 )2 + 3.( y - 1 )2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-2y-1\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x-2y-1=0\\y-1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=2y+1\\y=1\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Vậy x = 3 , y = 1 thì x2 + 7y2 - 4xy - 2x - 2y + 4 = 0
2) 11x2 + y2 - 6xy - 14x + 2y +9 = 0
\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + 9x2 - 6x +1 ] + 2x2 - 8x + 8 = 0
\(\Leftrightarrow\)[ y2 - 2y.( 3x - 1 ) + ( 3x - 1 )2 ] + 2.( x2 - 4x + 4 ) = 0
\(\Leftrightarrow\)( y - 3x + 1 )2 + 2.( x - 2 )2 = 0
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(y-3x+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y-3x+1=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=3x-1\\x=2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y=5\\x=2\end{cases}}\)
Vậy x = 2 , y = 5 thì 11x2 + y2 - 6xy - 14x + 2y + 9 = 0
\(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)