loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 5 2024

Gọi M là trung điểm EG \(\Rightarrow AM\perp EG\) (tam giác cân)

\(\Rightarrow AM\perp\left(EFGH\right)\Rightarrow AM=d\left(A;\left(EFGH\right)\right)\)

\(EG=30-2x\Rightarrow EM=\dfrac{1}{2}EG=15-x\)

\(\Rightarrow AM=\sqrt{AE^2-EM^2}=\sqrt{x^2-\left(15-x\right)^2}=\sqrt{30x-225}\)

Do AEG là tam giác, theo BĐT tam giác: \(\left\{{}\begin{matrix}AE+AG>EG\\\left|AG-AE\right|< EG\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+x>30-2x\\0< 30-2x\end{matrix}\right.\) \(\Rightarrow\dfrac{15}{2}< x< 15\)

\(V=AD.S_{\Delta AEG}=30.\dfrac{1}{2}AM.EG=15.\left(30-2x\right)\sqrt{30x-225}\)

\(V^2=15^3.4\left(15-x\right)^2\left(2x-15\right)=15^3.4.\left(15-x\right)\left(15-x\right)\left(2x-15\right)\)

\(\le15^3.4.\left(\dfrac{15-x+15-x+2x-15}{3}\right)^3=...\)

Dấu "=" xảy ra khi \(15-x=2x-15\Rightarrow x=10\)

\(\Rightarrow d\left(A;\left(EFGH\right)\right)=AM=\sqrt{30.10-225}=5\sqrt{3}\)

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

17 tháng 10 2021

a) \(\left(2m-1\right)sinx+1-m=0\Rightarrow sinx=\dfrac{m-1}{2m-1}\)

     Pt có nghiệm:  \(-1\le\dfrac{m-1}{2m-1}\le1\)

                           \(\Rightarrow1-2m\le m-1\le2m-1\Rightarrow m\ge\dfrac{2}{3}\)

17 tháng 10 2021

b) \(\left(m+1\right)sin3x-cos3x=m+2\)

    Pt có nghiệm:   \(\left(m+1\right)^2+\left(-1\right)^2\ge\left(m+2\right)^2\)

                           \(\Rightarrow m^2+2m+1+1\ge m^2+4m+4\)

                           \(\Rightarrow-2m\ge2\Rightarrow m\le-1\)

6 tháng 5 2021

hmm đóng góp ý kiến , lớp 11 giờ đã học đạo hàm rồi nhỉ , đạo hàm trên tử và mẫu đi xong thay giá trị =pi/3 vào là xong đáp án sẽ là -3 căn 3 

NV
19 tháng 4 2022

Gọi H là trung điểm AB, có lẽ từ 2 câu trên ta đã phải chứng minh được \(SH\perp\left(ABCD\right)\)

Do \(\left\{{}\begin{matrix}DM\cap\left(SAC\right)=S\\MS=\dfrac{1}{2}DS\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)\)

Gọi E là giao điểm AC và DH

Talet: \(\dfrac{HE}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow HE=\dfrac{1}{2}DE\)

\(\left\{{}\begin{matrix}DH\cap\left(SAC\right)=E\\HE=\dfrac{1}{2}DE\end{matrix}\right.\) \(\Rightarrow D\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)=d\left(M;\left(SAC\right)\right)\)

Từ H kẻ HF vuông góc AC (F thuộc AC), từ H kẻ \(HK\perp SF\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

ABCD là hình vuông \(\Rightarrow\widehat{HAF}=45^0\Rightarrow HF=AH.sin45^0=\dfrac{a\sqrt{2}}{4}\)

\(SH=\dfrac{a\sqrt{3}}{2}\), hệ thức lượng:

\(HK=\dfrac{SH.HF}{\sqrt{SH^2+HF^2}}=\dfrac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{a\sqrt{21}}{14}\)

NV
19 tháng 4 2022

undefined