Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n-5}{n+1}\in Z\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n-1\)
\(\Rightarrow n-1\inƯ\left(6\right)\)
\(\Rightarrow n-1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-5;-2;-1;0;2;3;4;7\right\}\)
Theo mình là :
\(\frac{n-5}{n+1}=\frac{n-6+1}{n+1}=\frac{-6}{n+1}\)
=> n + 1 \(\in\) Ư (-6) = {1;-1;2;-2;3;-3;6;-6}
=> n = { 0;-2;1;-3;2;-4;5;-7}
Mà n \(\ne\) 1 => n \(\in\) {0;-2;-3;2;-4;5;-7}
a. Để A là số nguyên=> n = {0;-3;2;-4;5;-7}
b Để A là tổi giản => n = -2
Để D nguyên thì
8n-5 chia hết cho 3n+2
=> 24n-15 chia hết cho 3n+2
=> 24n+16-31 chia hết cho 3n+2
Vì 24n+16 chia hết cho 3n+2
=> -31 chia hết cho 3n+2
=> 3n+2 thuộc Ư(31)
3n+2 | n |
1 | -1/3 |
-1 | -1 |
31 | 29/3 |
-31 | -11 |
Mà n nguyên
=> n \(\in\){-1; -11}
Gọi ƯCLN(8n-5; 3n+2) là d. Ta có:
8n-5 chia hết cho d => 24n-15 chia hết cho d
3n+2 chia hết cho d => 24n+16 chia hết cho d
=> 24n+16-(24n-15) chia hết cho d
=> 31 chia hết cho d
Giả dử phân số rút gọn được
=> 3n+2 chia hết cho 31
=> 3n+2+31 chia hết cho 31
=> 3n+33 chia hết cho 31
=> 3(n+11) chia hết cho 31
=> n+11 chia hết cho 31
=> n = 31k-11
KL: Để D tối giản thì n \(\ne\)31k-11
a)\(n-3\ne0\Leftrightarrow n\ne3\)
b)\(n-3>0\Leftrightarrow n>3\)
c)\(n-3< 0\Leftrightarrow n< 3\)
Bài 1
1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(A=\frac{15}{14}\)
2,
a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)
Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)
Suy ra \(n\in\left\{6;4;8;2\right\}\)
Vậy ......
b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)
Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)
Khi đó A = 5
Vậy A đạt GTLN khi và chỉ khi n = 6
a, ta có \(\frac{n+5}{n-2}\) =\(\frac{n-2+7}{n-2}\)=1+\(\frac{7}{n-2}\)
để \(\frac{n+5}{n-2}\)=>\(\frac{7}{n-2}\)
ta có : 7 \(\varepsilon\)ưc của n-2
ư(7)=+1;+7;-1;-7
=> n-2=1
n=3
n-2=7
n=9
n-2=-1
n=1
n-2=-7
n=-5
chúc bạn học tốt
\(2n-1+5n-2=\frac{7}{32}\)
\(\Rightarrow\left(2n+5n\right)-\left(1+2\right)=\frac{7}{32}\)
\(\Rightarrow7n-3=\frac{7}{32}\)
\(\Rightarrow7n=\frac{53}{96}\)
\(\Rightarrow n=\frac{53}{672}\)
Mà \(n=\frac{53}{672}\notin Z\)
\(\Rightarrow x\) không có giá trị thỏa mãn
Vậy \(x\) không có giá trị thỏa mãn
Ta có: \(A=\frac{n+7}{n+2}=\frac{\left(n+2\right)+5}{n+2}=1+\frac{5}{n+2}\)
Vì 1 > 0 và không đổi \(\Rightarrow\)Để A max thì \(\frac{5}{n+2}\)max
Vì 5 > 0 và không đổi \(\Rightarrow\)Để \(\frac{5}{n+2}\)max thì n + 2 min và n + 2 > 0 ( vì nếu n + 2 âm thì phân số sẽ âm và khong thể lớn nhất )
Ta có : n + 2 = 1
n = 1 - 2 = -1
Vậy với n = -1 thì a max và = 5
Chúc bạn học tốt!!!
A = n+2/n+5
A = n-5+7/n-5
A = n-5/n-5 + 7/n-5
A = 1 + 7/n-5
Để A € Z thì
7 ÷ hết cho n-5
Vậy( n-5)€ U(7) = {1;-1;7;-7}
Nếu n-5=1 thì n=6
Nếu n-5=-1 thì n=4
Nếu n-5=7 thì n=12
Nếu n-5=-7 thì n=-2
Đúng nha. Bạn yên tâm
Tk mk nha. Chúc bạn học giỏi
A = n+2/n+5
A = n-5+7/n-5
A = n-5/n-5 + 7/n-5
A = 1 + 7/n-5
Để A € Z thì
7 ÷ hết cho n-5
Vậy( n-5)€ U(7) = {1;-1;7;-7}
Nếu n-5=1 thì n=6
Nếu n-5=-1 thì n=4
Nếu n-5=7 thì n=12
Nếu n-5=-7 thì n=-2
Đúng nha. Bạn yên tâm
Tk mk nha. Chúc bạn học giỏi