![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(n^{100}=n^9\)
Ta có: \(n^{100}=n^9\)
\(n^{100}-n^9=0\)
\(n^9\cdot\left(n^{91}-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}n^9=0\\n^{91}-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n^{91}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}n=0\\n=1\end{cases}}\)(t/m)
Vậy \(n\in\left\{0;1\right\}\)
Ý b) bạn làm giống dzậy nha
t/m là thỏa mãn đk n là số tự nhiên
n100 = n9
=> n100 - n9 = 0
n9.(n91-1) = 0
=> n9 = 0 => n = 0
n91 - 1 = 0 => n91 = 1 => n = 1
KL:...
bài còn lại lm tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình chỉ làm được phần b thôi nhé ! Bạn thông cảm
\(25< 3^n< 250\)
Ta có :
\(3^3\le3^n\le3^5\)
\(\Rightarrow3\le n\le5\)
\(\Rightarrow n=\left\{3;4;5\right\}\)
Vậy \(n=\left\{3;4;5\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}< \frac{1}{2\cdot3}\); \(\frac{1}{4^2}< \frac{1}{3\cdot4}\); ....; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow S< 1-\frac{1}{9}\)
\(\Rightarrow S< \frac{8}{9}\) (1)
\(\frac{1}{2^2}>\frac{1}{2\cdot3};\frac{1}{3^2}>\frac{1}{3\cdot4};\frac{1}{4^2}>\frac{1}{4\cdot5};...;\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow S>\frac{2}{5}\) (2)
(1)(2) => 2/5 < S < 8/9
\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}< \frac{1}{a^2}\)
\(\frac{1}{a}-1-\frac{1}{a}=-1< \frac{1}{a^2}\) Vì \(\frac{1}{a^2}>0;-1< 0\)
Khi đó thì ĐỀ SAI
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(n+8⋮n\)
\(\Rightarrow8⋮n\)(vì \(n⋮n\))
\(\Rightarrow n\inƯ\left(8\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
b, \(3n+5⋮n\)
\(\Rightarrow5⋮n\)(vì \(3n⋮n\))
\(\Rightarrow n\inƯ\left(5\right)\)
\(\Rightarrow n\in\left\{\pm1;\pm5\right\}\)
c, \(n+7⋮n+1\)
\(\Rightarrow\left(n+1\right)+6⋮n+1\)
\(\Rightarrow6⋮n+1\)(vì \(n+1⋮n+1\))
\(\Rightarrow n+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow n\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
Hok tốt nha^^
\(A=n^3=n+9.\left(n-1\right).n.\left(n+1\right)\)
\(\Rightarrow A=n^3=n+\left(9n-9\right).n.\left(n+1\right)\)
\(\Rightarrow A=n^3=n+\left(9n^2-9n\right).\left(n+1\right)\)
\(\Rightarrow A=n^3=n+9n^3+9n^2-9n^2-9n\)
\(\Rightarrow A=n^3=n+9n^3-9n\)
\(\Rightarrow n+9n^3-9n-n^3=0\)
\(\Rightarrow n.\left(1+9n^2-9-n^2\right)=0\)
\(\Rightarrow n=0\) hoặc \(1+9n^2-9-n^2=0\)
\(\Rightarrow n=0\) \(\Rightarrow\left(-8\right)+9n^2-n^2=0\)
\(\Rightarrow n^2.\left(9-1\right)=\left(-8\right)\)
\(\Rightarrow8n^2=\left(-8\right)\)
\(\Rightarrow n^2=\frac{-8}{8}=-1\)
=>Không tìm được n thỏa mãn
\(\Rightarrow n\in\varnothing\)
Vậy n=0
Chúc bn học tốt
Cảm ơn nhiều nha