Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số thí sinh làm bài chỉ gồm 1 tờ giấy thi là x ( đk : x \(\in\) N* ; X < 24 )
Số thí sinh làm bài gồm 2 tờ giấy thi là y ( đk y\(\in\) N* ; y < 24 )
Do một phòng thi có 24 thí sinh dự thi nên ta có phương trình
x + y = 24 ( 1 )
Sau khi thu bài cán bộ coi thi đếm được 33 tờ giấy thi nên ta có phương trình : x + 2y = 33 ( 2 )
Từ ( 1 ) và ( 2 ) ta có hệ phương trình
\(\hept{\begin{cases}x+y=24\\x+2y=33\end{cases}\Leftrightarrow\hept{\begin{cases}x=15\\y=9\end{cases}\left(TM\right)}}\)
Vậy có 15 thí sinh làm bài gồm 1 tờ giấy thi , có 9 thí sinh làm bài gồm 2 tờ giấy thi
Gọi số câu đúng và số câu sai lần lượt là a,b
=>a+b=50 và 2a-b=76
=>a=42 và b=8
=>An đúng được 42 câu
a: Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>\(\widehat{AMB}=90^0\)
b: Xét ΔOMC vuông tại M có MH là đường cao
nên \(HC\cdot HO=HM^2\left(1\right)\)
Xét ΔMAB vuông tại M có MH là đường cao
nên \(HA\cdot HB=HM^2\left(2\right)\)
Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)
c: Xét tứ giác AMBQ có
O là trung điểm của AB và MQ
Do đó: AMBQ là hình bình hành
Hình bình hành AMBQ có AB=MQ
nên AMBQ là hình bình hành
chỉ có 1 câu vì UCLN của số câu hỏi của 3 bạn là 26,23,18 là bằng 1 nên trả lời cùng đúng 1 câu
Gọi số bài kiểm tra điểm 9 là x (x>16, x>y;x<100))
Gọi số bài kiểm tra điểm 10 là y (y<100)
-Vì số bài điểm 9 nhiều hơn điểm 10 là 16 bài nên ta có PT: x-y=16 (1)
-Vì tổng số bài là 100 nên ta có PT: x+y=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x-y=16\\x+y=100\end{matrix}\right.\)
Giải HPT ta được \(\left\{{}\begin{matrix}x=58\\y=42\end{matrix}\right.\)
Vậy...