Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2+\frac{-1}{n+3}\)
Để\(A\inℤ\Leftrightarrow\frac{-1}{n+3}\inℤ\)
\(\Leftrightarrow n+3\inƯ\left(-1\right)=\left\{\pm1\right\}\)
Vậy\(n\in\left\{-2;-4\right\}\)
\(A=\frac{3}{n-2}\) la phan so khi \(n-2\ne0\Rightarrow n\ne2\)
\(A=\frac{3}{n-2}\inℤ\Leftrightarrow3⋮n-2\)
\(\Rightarrow n-2\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(A=\frac{3}{n-2}\)
a) Để A là 1 phân số \(\Rightarrow n-2\ne0\Rightarrow n\ne2\)
b) Để A \(\inℤ\Rightarrow3⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)
- Để A là phân số
\(\Rightarrow n+3\ne0\)
\(\Rightarrow n\ne-3\)
- Để A là số nguyên
=>n-2 chia hết n+3
Mà n-2=n+3-5
=>5 chia hết n+3
=>n+3\(\in\)Ư(5)
=>n+3\(\in\){1;-1;5;-5}
=>n\(\in\){-2;-4;2;-8}
- Để A là phân số
$\Rightarrow n+3\ne0$⇒n+3≠0
$\Rightarrow n\ne-3$⇒n≠−3
- Để A là số nguyên
=>n-2 chia hết n+3
Mà n-2=n+3-5
=>5 chia hết n+3
=>n+3$\in$∈Ư(5)
=>n+3$\in$∈{1;-1;5;-5}
=>n$\in$∈{-2;-4;2;-8}
a, \(A=\frac{n-2}{n+3}\) là phân số \(\Leftrightarrow n+3\ne0\)
\(\Leftrightarrow n\ne-3\)
b, \(A=\frac{n-2}{n+3}\) là số nguyên \(\Leftrightarrow n-2⋮n+3\)
\(n-2⋮n+3\)
\(\Rightarrow n+3-5⋮n+3\)
\(n+3⋮n+3\)
\(\Rightarrow5⋮n+3\)
\(\Rightarrow n+3\inƯ\left(5\right)\)
\(\Rightarrow n+3\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-4;-2;-8;2\right\}\)