\(a.\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)

Ai làm nhanh mik tim...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)

Vì \(\left|x-\frac{2}{3}\right|\ge0\)và \(\left|y+\frac{5}{9}\right|\ge0\)nên \(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|\ge0\)

(Dấu "="\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)và \(\left|y+\frac{5}{9}\right|=0\))

\(\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-5}{9}\end{cases}}\)

vì \(\left|x-\frac{2}{3}\right|>0\)hoặc =0 ;\(\left|y+\frac{5}{9}\right|>0\)hoặc =o

\(\left|x-\frac{2}{3}\right|+\left|y+\frac{5}{9}\right|=0\)

nên |x-2/3| =0 và |y+5/9|=0

\(\Rightarrow\hept{\begin{cases}x-\frac{2}{3}=0\\y+\frac{5}{9}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{-5}{9}\end{cases}}}\)

16 tháng 7 2019

\(\hept{\begin{cases}\left(x+\frac{2019}{2020}\right)^{100}\ge0\\\left(y-\frac{9}{11}\right)^{200}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-2019}{2020}\\y=\frac{9}{11}\end{cases}}\)

16 tháng 7 2019

Ta có : \(\left[x+\frac{2019}{2020}\right]^{100}\ge0\forall x\)

\(\left[y-\frac{9}{11}\right]^{200}\ge0\forall y\)

\(\Leftrightarrow\left[x+\frac{2019}{2020}\right]^{100}+\left[y-\frac{9}{11}\right]^{200}\ge0\forall x,y\)

Dấu " = " xảy ra khi : \(\hept{\begin{cases}x+\frac{2019}{2020}=0\\y-\frac{9}{11}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2019}{2020}\\y=\frac{9}{11}\end{cases}}\)

16 tháng 7 2019

a.\(A=\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\)

Ta có: \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)

          \(\left|y-\frac{14}{3}\right|\ge0\forall x\)

    \(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|\ge0\forall x\)

   \(\Rightarrow\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\)

Dấu = xảy ra khi :

        \(\frac{x}{5}+\frac{23}{2}=0\Leftrightarrow\frac{x}{5}=-\frac{23}{2}\Leftrightarrow x=-\frac{115}{2}\)

         \(y-\frac{14}{3}=0\Leftrightarrow y=\frac{14}{3}\)

Vậy ..............

16 tháng 7 2019

Ta có:

a) \(\left|\frac{x}{5}+\frac{23}{2}\right|\ge0\forall x\)

   \(\left|y-\frac{14}{3}\right|\ge0\forall y\)

=> \(\left|\frac{x}{5}+\frac{23}{2}\right|+\left|y-\frac{14}{3}\right|+2019\ge2019\forall x;y\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{x}{5}+\frac{23}{2}=0\\y-\frac{14}{3}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)

Vậy Min của A = 2019 tại \(\hept{\begin{cases}x=-\frac{115}{2}\\y=\frac{14}{3}\end{cases}}\)

câu b tượng tự 

\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)

\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)

_Tần vũ_

\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)

\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)

\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)

\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)

\(\Leftrightarrow3x=\frac{1}{6}\)

\(\Leftrightarrow x=\frac{1}{18}\)

_Tần Vũ_

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

x-[17/2-6/35]=-1/3

x-583/70=-1/3

x=-1/3+583/70

x=1679/210

vậy x=1769/210

[2/3-(x-7/4)]=9/2+5/4

[2/3-(x-7/4)]=23/4

(x-7/4)=23/4+2/3

(x-7/4)=77/12

x=77/12+7/4

x=49/6

vậy x=49/6

15 tháng 6 2018

Giải:

Vì:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)

Nên dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)

Vì:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)

Dấu "=" xảy ra, khi và chỉ khi:

\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)

Vậy ...

7 tháng 9 2016

a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)

=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)

Vậy không tồn tại giá trị của x thỏa mãn đề bài

b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)

=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)

=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)

Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)

c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)

=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)

=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)

=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)

Vậy không tồn tại giá trị của x thỏa mãn đề bài

7 tháng 9 2016

giỏi ghê!!!

2 tháng 4 2019

1)

a)

\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)

\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)

\(\frac{-20}{5}< x< \frac{-3}{10}\)

\(\frac{-40}{10}< x< \frac{-3}{10}\)

\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)

2 tháng 4 2019

\(\left(\frac{-5}{3}\right)^3< x< \frac{-24}{35}.\frac{-5}{6}\)

\(\frac{25}{3}< x< \frac{-4}{7}.\frac{1}{1}\)

\(\frac{-25}{3}< x< \frac{-4}{7}\)

\(\frac{-175}{21}< x< \frac{-12}{21}\)

\(\Rightarrow Z\in\left\{-13;-14;-15;-16;...;-174\right\}\)