\(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}-\dfrac{x}{x-6}\)

\(=\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(=\dfrac{12\left(x-3\right)}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}-\dfrac{x}{x-6}\)

\(=\dfrac{12}{2\left(x-6\right)}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

3 tháng 6 2017

a) rút gọn

\(S=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}+\dfrac{x}{6-x}\)

= \(\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right):\dfrac{2x-6}{x\left(x+6\right)}+\dfrac{x}{6-x}\)

=\(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right):\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)

=\(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}:\dfrac{\left(2x-6\right)\left(x-6\right)}{x\left(x+6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)

= \(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x-6\right)\left(x+6\right)}{\left(2x-6\right)\left(x-6\right)}+\dfrac{x}{6-x}\)

= \(\dfrac{6}{x-6}+\dfrac{-x}{-\left(6-x\right)}\)

= \(\dfrac{6}{x-6}+\dfrac{-x}{x-6}=\dfrac{6-x}{x-6}=-1\)

b)

Tìm x để giá trị của S = -1

Với mọi x khác 6 thì giá trị của S = -1

3 tháng 6 2017

b)

Vì giá trị của biểu thức đã được xác định nên giá trị của

S = -1 không phụ thuộc vào giá trị của biến x.

28 tháng 6 2017

Phép trừ các phân thức đại số

27 tháng 11 2017

a) Tớ làm luôn nhé , không chép lại đề đâu

P = \(\left[\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right].\dfrac{x\left(x+6\right)}{2x-6}\)

ĐKXĐ : x # -6 ; x # 6 ; x # 0 ; x # 3 . Khi đó , ta có :

P = \(\left[\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]\).\(\dfrac{x\left(x+6\right)}{2x-6}\)

P = \(\dfrac{x^2-x^2+12x-36}{x-6}.\dfrac{1}{2x-6}\)

P = \(\dfrac{6\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}=\dfrac{6}{x-6}\)

b) Tương tự

9 tháng 7 2017

Rút gọn biểu thức

a) \(A=\dfrac{x+3}{2x^2+6x}\)

\(A=\dfrac{1.\left(x+3\right)}{2x\left(x+3\right)}\)

\(A=\dfrac{1}{2x}\)

b) \(B=\dfrac{2x-9}{x-6}+\dfrac{2-x}{x-6}-\dfrac{1}{6-x}\)

\(B=\dfrac{2x-9}{x-6}+\dfrac{2-x}{x-6}+\dfrac{1}{x-6}\)

\(B=\dfrac{2x-9+2-x+1}{x-6}\)

\(B=\dfrac{x-6}{x-6}\)

\(B=1\)

14 tháng 12 2018

a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)

14 tháng 12 2018

thanks

14 tháng 12 2017

1) ĐKXĐ của \(x\):

\(\left\{{}\begin{matrix}2x-6\ne0\\2x^2+6x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-3\right)\ne0\\2x\left(x+3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne0;x\ne-3\end{matrix}\right.\)

ĐKXĐ: \(x\ne0;x\ne\pm3\)

Ta có: \(\dfrac{3}{2x-6}-\dfrac{x-6}{2x^2+6x}\)

\(=\dfrac{3}{2\left(x-3\right)}-\dfrac{x-6}{2x\left(x+3\right)}\)

\(=\dfrac{3}{2\left(x-3\right)}+\dfrac{x-6}{2x\left(x-3\right)}\)

\(=\dfrac{3.2+x-6}{2x\left(x-3\right)}\)

\(=\dfrac{6+x-6}{2x\left(x-3\right)}\)

\(=\dfrac{x}{2x\left(x-3\right)}\)

\(=\dfrac{1}{2\left(x-3\right)}\)

14 tháng 12 2017

2) ĐKXĐ của câu này bạn làm tương tự câu trên nhé, ở đây ngoặc không đủ

ĐKXĐ: \(x\ne0;x\ne\pm2;x\ne3\)

Ta có: \(A=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)

\(A=\left(\dfrac{2+x}{2-x}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{2-x}{2+x}\right):\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{\left(2-x\right)\left(2+x\right)}-\dfrac{2-x}{2+x}\right).\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(A=\dfrac{\left(2+x\right)\left(2+x\right)-4x^2-\left(2-x\right)\left(2-x\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(A=\dfrac{4+4x+x^2-4x^2-\left(4-4x+x^2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(A=\dfrac{-4x^2+8x}{\left(2-x\right)\left(2+x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(A=\dfrac{-4x\left(x-2\right)}{\left(2-x\right)\left(2+x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(A=\dfrac{-4x^2\left(x-2\right)}{\left(2+x\right)\left(x-3\right)}\)

22 tháng 12 2017

a) \(x^3-\dfrac{1}{4}x=0\)

\(x.\left(x^2-\dfrac{1}{4}\right)=0\)

\(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)

⇔ x = 0 hoặc \(x=\dfrac{1}{2}\) hoặc \(x=\dfrac{-1}{2}\)

b) (2x - 1)2 - (x + 3)2 = 0

⇔ (2x - 1 - x - 3)(2x - 1 + x + 3) = 0

⇔ (x - 4)(3x +2) = 0

⇔ x = 4 hoặc \(x=\dfrac{-2}{3}\)

c) 2x2 - x - 6 = 0

⇔ 2x2 - 4x + 3x - 6 = 0

⇔ 2x(x - 2) + 3(x - 2) = 0

⇔ (x - 2) (2x + 3) = 0

⇔ x = 2 hoặc \(x=\dfrac{-3}{2}\)

22 tháng 12 2017

2)a.

\(B=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}\\ =\left(\dfrac{x\left(x^2+6x\right)-\left(x-6\right)\left(x^2-36\right)}{\left(x^2-36\right)\left(x^2+6x\right)}\right).\dfrac{x^2+6x}{2x-6}\\ =\dfrac{x^2\left(x+6\right)-\left(x-6\right)^2.\left(x+6\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x+6\right)\left(x^2-\left(x-6\right)^2\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x-x+6\right)\left(x+x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6.\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6}{x-6}\)

b)

\(x=2\Leftrightarrow B=\dfrac{6}{x-6}=\dfrac{6}{2-6}=\dfrac{6}{-4}=-\dfrac{3}{2}\)

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26