\(\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}-\frac{4}{x-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

\(1,ĐKXĐ:x\ge0;x\ne4\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-2+\sqrt{x}+2-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{2}{\sqrt{x}+2}\right)\)

\(A=\frac{2}{\sqrt{x}}\)

\(2,A>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{4}{2\sqrt{x}}-\frac{\sqrt{x}}{2\sqrt{x}}>0\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{2\sqrt{x}}>0\)

Do \(\sqrt{x}>0\Rightarrow2\sqrt{x}>0\)

\(\Rightarrow4-\sqrt{x}>0\)

\(\Leftrightarrow-\sqrt{x}>-4\)

\(\Leftrightarrow\sqrt{x}< 4\)

\(\Leftrightarrow x< 16\)

Kết hợp với ĐKXĐ thì \(0\le x< 16\)và \(x\ne4\)

\(3,A=-2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}=-2\sqrt{x}+5\)

\(\Leftrightarrow\sqrt{x}\left(-2\sqrt{x}+5\right)=2\)

\(\Leftrightarrow-2x+5\sqrt{x}-2=0\)

\(\Leftrightarrow-2x+2.5\sqrt{x}+2.5\sqrt{x}-2=0\)

\(\Leftrightarrow\left(-2x+2.5\sqrt{x}\right)+\left(2.5\sqrt{x}-2\right)=0\)

Đến đây thì mình chịu

Bạn tự giải nốt nhé

HỌC TỐT

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

5 tháng 9 2018

giải giúp em với mấy anh chị