\(\left(152\frac{2}{4}-148\frac{3}{8}\right):0,2=x:0,3\)
  • b)
    K
    Khách

    Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

    10 tháng 11 2016

    Bài 1:

    \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

    Ta thấy:

    \(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

    \(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

    \(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

    \(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

    \(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

    \(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

    \(\Rightarrow10x+\frac{10}{11}=0\)

    \(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

     

     

    10 tháng 11 2016

    Bài 2:

    Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

    \(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

    \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

    \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

    \(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

    \(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

    \(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

    4 tháng 8 2019

    a. \(25^3:5^2\)
    \(=\left(5^2\right)^3:5^2\)
    \(=5^6:5^2=5^4\)
    b. \(\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)
    \(=\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)
    \(=\left(\frac{3}{7}\right)^{21-\left(2+6\right)}=\left(\frac{3}{7}\right)^{21-12}=\left(\frac{3}{7}\right)^9\)

    4 tháng 8 2019

    \(a,25^3:5^2\)

    =\(\left(5^2\right)^3:5^2\)

    =\(5^6:5^2\)

    =\(5^4\)

    \(b,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6\)

    =\(\left(\frac{3}{7}\right)^{21}:\left[\left(\frac{3}{7}\right)^2\right]^6\)

    \(=\left(\frac{3}{7}\right)^{21}:\left(\frac{3}{7}\right)^{12}\)

    \(=\left(\frac{3}{7}\right)^9\)

    \(c,3-\left(\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2\)

    =\(3-1+\frac{1}{4}:2\)

    \(=2+\frac{1}{4}\cdot\frac{1}{2}\)

    \(=2+\frac{1}{8}\)

    \(=\frac{17}{8}\)

    \(d,\left(-\frac{7}{4}:\frac{5}{8}\right)\cdot\frac{11}{16}\)

    \(=\left(-\frac{7}{4}\cdot\frac{8}{5}\right)\cdot\frac{11}{16}\)

    \(=-\frac{14}{5}\cdot\frac{11}{16}\)

    \(=-\frac{77}{40}\)

    \(e,\frac{2}{3}+\frac{1}{3}\cdot\frac{-6}{10}\)

    \(=\frac{2}{3}-\frac{1}{5}\)

    \(=\frac{7}{15}\)

    25 tháng 9 2018

    a) \(\left(2-\frac{3}{2}\right)\left(2-\frac{4}{3}\right)\left(2-\frac{5}{4}\right)\left(2-\frac{6}{4}\right)\)

    \(=\frac{1}{3}\left(-\frac{4}{3}+2\right)\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

    \(=\frac{1}{2}.\frac{2}{3}\left(-\frac{5}{4}+2\right)\left(-\frac{6}{4}+2\right)\)

    \(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}\left(-\frac{6}{4}+2\right)\)

    \(=\frac{1.2.3\left(2-\frac{3}{2}\right)}{2.3.4}\)

    \(=\frac{1.3\left(2-\frac{3}{2}\right)}{3.4}\)

    \(=\frac{1.\left(2-\frac{3}{2}\right)}{4}\)

    \(=\frac{2-\frac{3}{4}}{4}\)

    \(=\frac{1}{2.4}\)

    \(=\frac{1}{8}\)

    b) \(\left(\frac{2003}{2004}+\frac{2004}{2003}\right):\frac{8028025}{8028024}\)

    \(=\frac{8028024\left(\frac{2003}{2004}+\frac{2004}{2003}\right)}{8028025}\)

    \(=\frac{8028024.\frac{8028025}{4014012}}{8028025}\)

    \(=\frac{16056050}{8028025}\)

    = 2

    14 tháng 10 2016

    e)

    => (x-2) . (x+7) = ( x-1 ) . ( x +4)

    => x2 +7x - 2x -14 = x2 - x + 4x - 4

    x2 + 5x - 14 = x2 + 3x - 4

    => 5x - 14  = 3x - 4

    => 5x  - 3x = 14-4

    => 2x         = 10 => x = 10 : 2 => x = 5

    c)

    =>( x-1) . 7 = ( x + 5 ) . 6

    => 7x - 7 = 6x + 30

    => 7x - 6x=  30 + 7

    => x         = 37

    13 tháng 10 2016

    a,x=\(\frac{5}{2}\)

    b,x=\(\frac{13}{176}\)

    c,x=37

    d, x=\(\frac{12}{5}\)

    e, x=5

    26 tháng 6 2017

    câu 1=0

    câu 2=3.

    2 tháng 8 2017

    2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28

    dễ thấy m \(\ne\)n , ta xét 2 trường hợp :

    a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9

    b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn

    Vậy n = 8 , m = 9 là đáp số bài trên

    2 tháng 8 2017

    đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)

    3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)

    3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)

    biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)

    \(\Rightarrow A< \frac{3}{4}\)

    26 tháng 10 2016

    a ) \(\left(\frac{2}{5}-x\right):1\frac{1}{3}+\frac{1}{2}=-4\)

         \(\left(\frac{2}{5}-x\right):\frac{4}{3}+\frac{1}{2}=-4\)

         \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-4-\frac{1}{2}\)

         \(\left(\frac{2}{5}-x\right):\frac{4}{3}=-\frac{9}{2}\)

            \(\frac{2}{5}-x=-\frac{9}{2}.\frac{4}{3}\)

            \(\frac{2}{5}-x=-3\)

                       \(x=\frac{2}{5}-\left(-3\right)\)

                       \(x=\frac{2}{5}+3\)

                       \(x=\frac{3}{5}-\frac{15}{5}\)

                       \(x=-\frac{12}{5}\)

    Vay \(x=-\frac{12}{5}\) 

        

      

    26 tháng 10 2016

    b ) \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(1+\frac{2}{5}+\frac{2}{3}\right)=-\frac{5}{4}\)

         \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15}{15}+\frac{6}{15}+\frac{10}{15}\right)=-\frac{5}{4}\)

         \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\left(\frac{15+6+10}{15}\right)=-\frac{5}{4}\)

         \(\left(-3+\frac{3}{x}-\frac{1}{3}\right):\frac{31}{15}=-\frac{5}{4}\)

         \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{5}{4}.\frac{31}{15}\)

         \(\left(-3+\frac{3}{x}-\frac{1}{3}\right)=-\frac{1}{4}.\frac{31}{3}\)

            \(-3+\frac{3}{x}-\frac{1}{3}=-\frac{31}{12}\)

            \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{1}{2}\)

            \(-3+\frac{3}{x}=-\frac{31}{12}+\frac{6}{12}\)

            \(-3+\frac{3}{x}=\frac{-25}{12}\)

                         \(\frac{3}{x}=\frac{-25}{12}+3\)

                          \(\frac{3}{x}=\frac{-25}{12}+\frac{36}{12}\)

                          \(\frac{3}{x}=\frac{5}{6}\)

                          \(\frac{18}{6x}=\frac{5x}{6x}\)

    Đèn dây , bạn tự làm tiếp nhé , de rồi chứ