Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Ta có \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( đúng )
\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=\frac{3^2}{3}=3\)
Dấu "=" xảy ra tại a=b=c=1
b
\(P=\frac{x}{\left(x+10\right)^2}\)
Đặt \(y=\frac{1}{x+10}\Rightarrow x=\frac{1}{y}-10\)
\(\Rightarrow P=\left(\frac{1}{y}-10\right)\cdot y^2=-10y^2+y\)
\(=-10\left(y^2-2\cdot y\cdot\frac{1}{20}\cdot y+\frac{1}{400}\right)+\frac{1}{40}\)
\(=-10\left(y-\frac{1}{2}\right)^2+\frac{1}{40}\le\frac{1}{40}\)
Dấu "=" xảy ra tại \(y=\frac{1}{2}\Leftrightarrow x=10\)
Vậy...............................
iải phương trình gì
Đề đâu
Dora Nichow
ĐK \(a\ne\left\{-1;1\right\}\)
a. Ta có \(Q=\frac{a^3-3a^2+3a-1}{a^2-1}=\frac{\left(a-1\right)^3}{\left(a-1\right)\left(a+1\right)}=\frac{\left(a-1\right)^2}{a+1}\)
b. Khi \(\left|x\right|=5\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
Với \(x=5\Rightarrow Q=\frac{\left(5-1\right)^2}{5+1}=\frac{16}{6}=\frac{8}{3}\)
Với \(x=-5\Rightarrow Q=\frac{\left(-5-1\right)^2}{-5+1}=\frac{36}{-9}=-4\)
câu hỏi đâu bạn?
5(x - 3) - 4 = 2(x - 1) + 7