Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3. Xét tam giác ADM và tam giác AEM có :
góc ADM = góc AEM = 90 độ
Góc BAM = góc CAM (gt)
AM chung
=>Tam giác ADM = tam giác AEm (c.huyền - g.nhọn)
=>MD = ME (cặp cạnh t/ứng )
AD = AE (cặp cạnh t/ứng )
Xét tam giác MDB và tam giác MEC có :
MB = MC (gt)
góc MDB = góc MEC = 90 độ
MD = ME ( câu a)
=>Tam giác MDB = Tam giác MEC (c.huyền-c.g.vuông)
Vì AD + DB = AB
AE + EC = AC
Mà AD = AE
DB = EC
=>AB = AC
Xét tam giác ABM và tam giác ACM có
AM chung
góc BAM = góc CAM (gt)
AB = AC (CMT)
=>Tam giác ABM = Tam giác ACM (c.huyền-g.nhon)
Vậy có 3 cặp tam giác bằng nhau
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{90}{10}=9\)
\(\Leftrightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.5=45\end{cases}}\)
b) \(2x=3y\Leftrightarrow\frac{x}{15}=\frac{y}{10},2y=5z\Leftrightarrow\frac{y}{10}=\frac{z}{4}\)
suy ra \(\frac{x}{15}=\frac{y}{10}=\frac{z}{4}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{4}=\frac{x-z}{15-4}=\frac{11}{11}=1\)
\(\Leftrightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=4.1=4\end{cases}}\)
c) \(\frac{x}{y}=\frac{3}{4}\Leftrightarrow\frac{x}{9}=\frac{y}{12},\frac{y}{z}=\frac{3}{5}\Leftrightarrow\frac{y}{12}=\frac{z}{20}\)
suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{2.9-3.12+20}=\frac{6}{2}=3\)
\(\Leftrightarrow\hept{\begin{cases}x=3.9=27\\y=3.12=36\\z=3.20=60\end{cases}}\)
b: |2x-1|<5
=>2x-1>-5 và 2x-1<5
=>2x>-4 và 2x<6
=>-2<x<3
mà x là số nguyên dương
nên \(x\in\left\{1;2\right\}\)
a^+b^=c^
a^+b^+c^=180 độ
2a^=3b^
gõ hệ vào máy giải ra dc a^=54 ; b^=36;c^=90
mình chỉ bày cách để tính chứ ko phải cách làm đâu
ta có A+B=C.Mà A+B+C=180 độ
Thay C+C=180 độ
=>2C=180 độ
=>c=90 độ hay A+B=90 độ
Ta có 2A=3B=>A/3=B/2=A+B/3+2=90/5=18
=>A=18.3=54
Vậy A=54
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
BD=CE
\(\widehat{ABD}=\widehat{ACE}\)
Do đó: ΔABD=ΔACE
Suy ra: AB=AC
hay ΔABC cân tại A
b: XétΔABC có
AD là đường cao
CH là đường cao
AD cắt CH tại D
Do đó: D là trực tâm của ΔABC
=>BD vuông góc với AC
Chọn B
cho em hỏi tại sao lại chọn B ạ ???