\(2+2^2+2^3+...+2^{60}\)chia hết cho 3,7,15

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

\(A=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\\ =\left(1+2\right)\cdot\left(2+2^3+...+2^{59}\right)\\ =3\cdot\left(2+2^3+...+2^{59}\right)⋮3\)

\(A=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\cdot\left(1+2+2^2\right)\\ =\left(1+2+2^2\right)\cdot\left(2+2^4+...+2^{58}\right)\\ =7\cdot\left(2+2^4+...+2^{58}\right)⋮7\)

\(A=2+2^2+2^3+...+2^{60}\\ =\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\\ =2\cdot\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+...+2^{57}\cdot\left(1+2+2^2+2^3\right)\\ =\left(1+2+2^2+2^3\right)\cdot\left(2+2^5+...+2^{57}\right)\\ =15\cdot\left(2+2^5+...+2^{57}\right)⋮15\)

20 tháng 7 2017

+A=\(2+2^2+2^3+...+2^{60}\)

+A=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

+A=\(2.\left(1+2\right)+2^3.\left(1+2\right)+..+2^{59}.\left(1+ 2\right)\)

+A=\(2.3+2^3.3+..+2^{^{ }59}+3\)

=>A chia hết cho 3

Mấy câu sau thì nhóm 3,4 là Ok.

Mình nghĩ là làm như vậy, các bạn thấy thế nào?

20 tháng 11 2016

\(2+2^2+2^3+...+2^{60}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)\) chia hết cho 3 (đpcm)

Bạn nhóm các số hạng để chứng minh chia hết cho 7;15 cũng tương tự mình làm ở trên nhé :)

22 tháng 5 2015

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

3 tháng 9 2016

Ta có: A = 3 + 32 + 33 + ... + 3100

=> 3A =  32 + 33 + 34 + ... + 3101

=> 3A - A = 3101 - 3

=> 2A = 3101 - 3

=> 2A + 3 = 3101

=> x = 101

3 tháng 9 2016

\(2A=3^2+3^3+...+3^{101}\)

\(2A-A=3^2-3^2+3^3-3^3+...+3^{101}-3\)

\(A=3^{101}-3\)

\(2.3^{101}-6+3=3^x\)

\(3.\left(2.3^{100}-1\right)=3^x\)

11 tháng 12 2018

3B=3^1+3^2+3^3+.....+3^119+3^120

3B-B=(3^1+3^2+3^3+.....+3^119+3^120)-(1+3^1+3^2+3^3+.....+3^119)

2B=3^120-1

B=3^120-1/2

\(B=1+3^1+3^2+...+3^{118}+3^{119}\)

\(3B=3+3^2+3^3+..+3^{120}\)

\(3B-B=\left(3+3^2+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)

\(2B=1+3^{120}\)

Ta có: \(A=3-3^2-3^3-...-3^{100}\)

\(\Rightarrow A=-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Rightarrow A=-\left[\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\right]\)

\(\Rightarrow A=-\left[120+3^4\left(3+3^2+3^3+3^4\right)+...+3^{96}\left(3+3^2+3^3+3^4\right)\right]\)

\(\Rightarrow A=-\left[120+3^4.120+...+3^{96}.120\right]\)

\(\Rightarrow A=-\left[120\left(1+3^4+...+3^{96}\right)\right]\)

Ta thấy: \(120⋮40\Rightarrow-\left[120\left(1+3^4+...3^{96}\right)\right]⋮40\)

\(\Rightarrow3-3^2-3^3-...-3^{100}⋮40\)

\(\Rightarrow A⋮40\)

\(\Rightarrowđpcm\)

Cho em xin hỏi cái Bác vừa sai cho em ạ?

Ko hiểu sao Bác lại sai cho e ạ?

Sau khi Bác cho e thì em có ngồi đọc lại bài làm của em~

Em thấy ko có gì sai hay vấn đề cả nên em thắc mắc, nhiều lần e trl đúng nhưng có 1 số Bác ko hiểu sao vẫn sai cho e ạ!

Xin Bác ra mặt để cho e hỏi rốt cuộc bài làm của em sai ở đâu ạ???

9 tháng 2 2019

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)

\(\Rightarrow A⋮3\)

\(A=2+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)

\(A=2.7+...+2^{58}.7\)

\(A=7.\left(2+...+2^{58}\right)\)

\(\Rightarrow A⋮7\)

\(A=2+2^2+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)

\(A=2.15+...+2^{57}.15\)

\(A=15.\left(2+...+2^{57}\right)\)

\(\Rightarrow A⋮15\)

1 tháng 3 2017

3) Ta có : \(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}=\frac{100}{101}\)

1 tháng 3 2017

4)

A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}\right)+\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}\right)+\frac{1}{2}.\left(\frac{1}{5}-\frac{1}{7}\right)+...+\frac{1}{2}.\left(\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

A = \(\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(A=\frac{1}{2}.\frac{100}{101}\)

A = \(\frac{50}{101}\)

2, đặt tên biểu thức trên là A. Ta có :

\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{10100}\)

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(A=1-\frac{1}{101}\)

\(A=\frac{100}{101}\)

1) \(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(=1-\frac{1}{5}\)

\(=\frac{4}{5}\)