Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...0...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=0\)
Bài 2
a. \(-1\frac{2}{3}-|2x-1|:\frac{3}{5}=-2\)
\(|2x-1|:\frac{3}{5}=\frac{5}{3}-2\)
\(|2x-1|:\frac{3}{5}=-\frac{1}{3}\)
\(|2x-1|=-\frac{1}{5}\)
Vì giá trị tuyệt đối luôn \(\ge0\)với mọi x
mà \(-\frac{1}{5}< 0\)
=> \(x\in\varnothing\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
Bài 1:
1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3
= \(\frac{11}{3}\): \(\frac{10}{3}\)- 3
= \(\frac{11}{3}\). \(\frac{3}{10}\)- 3
= \(\frac{11}{10}\)- 3
= \(\frac{-19}{10}\)
2) \(\frac{5}{6}\): \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\) . \(\frac{52}{3}\)- \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))
= \(\frac{5}{6}\).( -30)
= -25
a) \(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}...\frac{2017}{2018}\)
\(=\frac{1.2...2017}{2.3...2018}\)
\(=\frac{1}{2018}\)
b) \(\left(1-\frac{1}{3}\right)\left(1-\frac{1}{6}\right)\left(1-\frac{1}{10}\right)\left(1-\frac{1}{15}\right)...\left(1-\frac{1}{190}\right)\)
\(=\frac{2}{3}.\frac{5}{6}.\frac{9}{10}.\frac{14}{15}...\frac{189}{190}\)
\(=\frac{4}{6}.\frac{10}{12}.\frac{18}{20}.\frac{28}{30}...\frac{378}{380}\)
\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.\frac{7.4}{5.6}...\frac{18.21}{19.20}\)
\(=\frac{\left(1.2.3...18\right).\left(4.5.6...21\right)}{\left(2.3.4...19\right).\left(3.4.5...20\right)}\)
\(=\frac{1.21}{19.3}\)
\(=\frac{21}{57}\)
c) \(\left(1+\frac{7}{9}\right)\left(1+\frac{7}{20}\right)\left(1+\frac{7}{33}\right)\left(1+\frac{7}{48}\right)...\left(1+\frac{7}{2009}\right)\)
\(=\frac{16}{9}.\frac{27}{20}.\frac{40}{33}.\frac{56}{48}...\frac{2016}{2009}\)
mk ko bít làm câu c ! xin lỗi bn nha! bn tự nghĩ cách làm câu c giúp mk nhé!
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...0...\left(1-1\frac{2}{7}\right).\left(1-\frac{3}{7}\right)\)
\(E=0\)
\(E=\frac{7-1}{7}+\frac{7-2}{7}+\frac{7-3}{7}+...+\frac{7-9}{7}+\frac{7-10}{7}\)
Vì trong biểu thức E có số hạng \(\frac{7-7}{7}=0\)
Nên E=0 (ĐPCM)
hok tốt