Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT
<=> \(\frac{3\left(a^2+b^2+c^2\right)+ab+bc+ac}{3\left(ac+bc+ac\right)}\ge\frac{8}{9}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
<=>\(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{a\left(a\left(b+c\right)+bc\right)}{b+c}+...\right)\)
<=> \(3\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(a^2+b^2+c^2+\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{abc}{b+c}+\frac{abc}{a+c}+\frac{abc}{a+b}\right)\)
Mà \(\frac{abc}{b+c}\le abc.\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{4}\left(ab+bc\right)\)
Khi đó BĐT
<=>\(\frac{1}{3}\left(a^2+b^2+c^2\right)+ab+bc+ac\ge\frac{8}{3}\left(\frac{1}{2}\left(ab+bc+ac\right)\right)\)
=> \(a^2+b^2+c^2\ge ab+bc+ac\)(luôn đúng )
=> ĐPCM
Dấu bằng xảy ra khi a=b=c
Cách này chủ yếu biến đổi tương đương nên chắc phù hợp với lớp 8
Nếu sử dụng SOS nhìn vào sẽ làm đc liền vì có Nesbitt lẫn \(\frac{a^2+b^2+c^2}{ab+bc+ac}\)
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
Câu đặc biệt :
\(\left(3x-2\right)\left(x+1\right)^2\left(3x+8\right)=-16\)
\(\Leftrightarrow9x^4+36x^3+29x^2-14x-16=-16\)
\(\Leftrightarrow9x^4+36x^3+29x^2-14x=0\)
\(\Leftrightarrow x\left(9x^3+36x^2+29x-14\right)=0\)
\(\Leftrightarrow x\left[\left(9x^3+18x^2-7x\right)+\left(18x^2+36x-14\right)\right]=0\)
\(\Leftrightarrow x\left[x\left(9x^2+18x-7\right)+2\left(9x^2+18x-7\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(9x^2+18x-7\right)=0\)
\(\Leftrightarrow x\left(x+2\right)\left[\left(9x^2+21x\right)-\left(3x+7\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left[3x\left(3x+7\right)-\left(3x+7\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(3x-1\right)\left(3x+7\right)=0\)
<=> x = 0 hoặc x + 2 = 0 hoặc 3x - 1 = 0 hoặc 3x + 7 = 0
<=> x = 0 hoặc x = - 2 hoặc x = 1/3 hoặc x = 7/3
Vậy phương trình có tập nghiệm là : \(S=\left\{0;\frac{1}{3};\frac{7}{3};-2\right\}\)
Câu 2:
a) Ta có: \(2x^2+3x+1>0\)
\(\Leftrightarrow\frac{2x^2+3x+1}{3}>\frac{0}{3}\)
\(\Leftrightarrow\frac{2}{3}x^2+x+\frac{1}{3}>0\)
=> đpcm
b) Ta có: \(4x-1< 0\)
\(\Leftrightarrow0-\left(4x-1\right)>0\)
\(\Leftrightarrow1-4x>0\)
=> đpcm
c) Ta có: \(\frac{3x-2}{4}+2\frac{1}{2}>0\)
\(\Leftrightarrow\frac{3x-2}{4}+\frac{10}{4}>0\)
\(\Leftrightarrow\frac{3x+8}{4}>0\)
\(\Rightarrow3x+8>0\)
=> đpcm
Câu 1:
Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)
\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)
Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)
=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)
Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)
Từ 1 và 2 => \(d=1\) => \(a-b\) và \(3a+3b+1\) là 2 số nguyên tố cùng nhau.
Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)
Vậy \(3a+3b+1\) và \(a-b\) đều là các số chính phương.
Câu 2:
Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)
Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)
Ta có bảng sau:
y-3 | 1 | -1 | 3 | -3 | 11 | -11 | 33 | -33 |
2x-5 | 33 | -33 | 11 | -11 | 3 | -3 | 1 | -1 |
2x | 38 | -28 | 16 | -6 | 8 | 2 | 6 | 4 |
x | 19 | -14 | 8 | -3 | 4 | 1 | 3 | 2 |
y | 4 | 2 | 6 | 0 | 14 | -9 | 36 | -30 |
Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)
a) Áp dụng quy tắc hóa trị, ta tìm được hóa trị của R là III.
b) Theo đề bài ta có :
MR2O3 = 4MCa <=> 2MR + 48 = 4.40 <=> 2MR = 160 - 48 = 112 <=> MR = 56. => R là sắt (Fe).
a) Gọi hóa trị của R là u, ta có hóa trị của Oxi là II.
Áp dụng quy tắc hóa trị, ta có:
2.u = 3.II => u = III
=> Hóa trị của R là III
b) Vì R2O3 nặng hơn Ca 4 lần nên:
\(M_{R_2O_3}=4.M_{Ca}=4.40=160\)
=> 2R + 3.16 = 160
=> 2R = 112
=> R = 56
=> R là sắt (Fe)
bài không khó, tư duy tí là ez ngay :v
Bài 1 :
\(A=\frac{x^2-4x+4}{x^3-2x^2-4x+8}\)
\(A=\frac{\left(x-2\right)^2}{\left(x^3-2x^2\right)-\left(4x-8\right)}\)
\(A=\frac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\)
\(A=\frac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}\)
\(A=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)\left(x-2\right)}\)
\(A=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)
\(A=\frac{1}{x+2}\)
Vậy điều kiện của x để A có giá trị âm là : \(x< -2\)
Bài 2 :
Gọi số điểm đại số lớp 8/1 đạt được là a
Gọi số điểm đại số lớp 8/2 đạt được là 60 - a
Khi thi hình học mỗi đội được thêm 25 điểm
=> Khi thi xong cả 2 môn lớp 8/1 được tổng : a + 25
=> Khi thi xong cả 2 môn lớp 8/2 được tổng : 60 - a + 25
Theo đề ta có tổng số điểm 2 môn của lớp 8/1 bằng 5/6 tổng số điểm của lớp 8/2
\(\Rightarrow a+25=\left(60-a+25\right)\cdot\frac{5}{6}\)
\(\Rightarrow a+25=\left(85-a\right)\cdot\frac{5}{6}\)
\(\Rightarrow\frac{6\left(a+25\right)}{6}=\frac{\left(85-a\right)\cdot5}{6}\)
\(\Rightarrow\frac{6a+150}{6}=\frac{425-5a}{6}\)
\(\Rightarrow6a+150=425-5a\)
\(\Rightarrow6a+5a=425-150\)
\(\Rightarrow11a=275\)
\(\Rightarrow a=\frac{275}{11}=25\)
=> Số điểm đại số lớp 8/1 đạt được là 25 điểm
=> Số điểm đại số lớp 8/1 đạt được là 60 - 25= 35 điểm
đề sai, sửa lại nhé :)
cho hai số a và b(a<b)
uses crt;
var a,b,nt,cp,hh,i,j,x:longint;
begin
write('nhap 2 so a va b:');
readln(a,b);
nt:=0; cp:=0;hh:=0;
for i:=a to b do begin
if i>1 then begin
x:=0;
for j:=2 to i-1 do
if i mod j=0 then x:=1;
if x=0 then inc(nt);
end;
x:=trunc(sqrt(i));
if sqr(x)=i then inc(cp);
x:=0;
if i>1 then
for j:=1 to i-1 do
if i mod j=0 then x:=x+j;
if x=i then inc(hh);
end;
writeln('co ',nt,' so nguyen to');
writeln('co ',cp,' so chinh phuong');
writeln('co ',hh,' so hoan hao');
readln
end.