Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, đặt t = căn x suy ra t lớn hơn bằng 0
quy đồng nhân từ (t-1) ( t+3) ta đc P = ((t^2 +16 ))/ t +3
các câu sau tự làm nha
\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)
Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).
Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).
Do đó ta có đpcm.
Bài 1:
Kẻ \(OM\perp AB\), \(OM\)cắt \(CD\)tại \(N\).
Khi đó \(MN=8cm\).
TH1: \(AB,CD\)nằm cùng phía đối với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)
\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2)
Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).
TH2: \(AB,CD\)nằm khác phía với \(O\).
\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)
\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)
Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).
Bài 3:
Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).
\(MA+MB=MA'+MB\ge A'B\)
Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).
Suy ra \(M\left(\frac{5}{3},0\right)\).
dễ mà bn
bài 2
\(a,\sqrt{9x^2}=9\)
\(3x=9\)
\(x=3\left(TM\right)\)
\(b,\sqrt{x^2+3x+9}=3\)
\(x^2+3x+9=9\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
\(\orbr{\begin{cases}x=0\\x+3=0\end{cases}\orbr{\begin{cases}x=0\left(TM\right)\\x=-3\left(TM\right)\end{cases}}}\)
\(c,\sqrt{x^2+6x+9}+1=3x\)
\(\sqrt{\left(x+3\right)^2}+1=3x\)
\(\left|x+3\right|+1=3x\)
ta thấy \(VT=\left|x+3\right|+1>0\)
\(< =>VP=3x>0\Rightarrow x>0\)
\(\left|x+3\right|+1=3x\)
\(x+3+1=3x\)
\(x=2\left(TM\right)\)
\(d,\frac{3\sqrt{x}}{\sqrt{x}+2}=2\)
\(ĐKXĐ:x\ge0\)
\(3\sqrt{x}=2\sqrt{x}+4\)
\(x=16\left(TM\right)\)
\(e,\frac{\sqrt{x}-5}{\sqrt{x}+5}< \frac{1}{3}\)
\(ĐKXĐ:x\ge0\)
\(\frac{\sqrt{x}-5}{\sqrt{x}+5}-\frac{1}{3}< 0\)
\(\frac{\sqrt{x}-5-\sqrt{x}-5}{3\sqrt{x}+15}< 0\)
\(\frac{-10}{3\sqrt{x}+15}< 0\)luôn đúng \(\forall\)với mọi x