Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\)có \(\widehat{B}=\widehat{C}\)=> \(\Delta ABC\)cân tại A
=> phân giác AD đồng thời là đường cao trong \(\Delta ABC\)=> AD vuông góc BC
lại có BC//Ay => AD vuông góc Ay
Vì góc B = góc C ---> tam giác ABC là tam giác cân
---> tia phân giác AD đồng thời cũng là đường cao
---> AD VUÔNG GÓC BC
Lại có Ay // BC
---> AD // Ay
học tốt
\(\frac{3x+25}{144}=\frac{2y-169}{25}=\frac{z+144}{169}=\frac{3x+2y+z}{338}=\frac{169}{338}=\frac{1}{2}\)
\(\Rightarrow3x+25=\frac{1}{2}.144=72\)
\(x=\frac{47}{3}\)
\(2y-169=\frac{1}{2}.25=\frac{25}{2}\)
\(y=\frac{363}{4}\)
Bài 5*:
\(E\inℤ\Rightarrow2E=\frac{2x+2}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Leftrightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
Bài 1:
\(A=\frac{x+15}{x-2}=\frac{x-2+17}{x-2}=1+\frac{17}{x-2}\inℤ\Leftrightarrow\frac{17}{x-2}\inℤ\)
mà \(x\)là số nguyên nên \(x-2\inƯ\left(17\right)=\left\{-17,-1,1,17\right\}\)
\(\Leftrightarrow x\in\left\{-15,1,3,19\right\}\).
Bài 2, 3, 4: Tương tự.
C= 0
chi tiết : 8 = 2^3 suy ra 8^13 = 2^39
9 = 3^2 suy ra 9^15 = 3^30
bạn thay vào triệt tiêu là ra -2/3 + 2/3 = 0
\(\Rightarrow x< \frac{2}{3}+\frac{3}{4}\)
\(\Rightarrow x< \frac{17}{12}\)
Bài 4:
a: 3,02>3,01
b: 7,548>7,513
c: 0,47854<0,49826
d: 2,424242>-2,424242
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}=k\) \(\left(k\ne0\right)\)
\(\Rightarrow x=5k;y=7k;z=3k\)
Ta có : x2 - y2 - z2 = 585
\(\Rightarrow\)\(25k^2+49k^2-9k^2=585\)
\(\Rightarrow\)\(65k^2=585\)
\(\Rightarrow k=9\)
\(\Rightarrow\)k = -3 hoặc 3
Với k=3 thì x=5.3=15; y=7.3=21; z=3.3=9
Với k=−3 thì x=5.(−3)=−15; y=7.(−3)=−21; z=3.(−3)=−9
Vậy (x;y;z)=(15;21;9); (−15;−21;−9)
a, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
\(\Rightarrow x^2=225\Rightarrow x=\pm15;y^2=441\Rightarrow y=\pm21;z^2=81\Rightarrow z=\pm9\)
b, Ta có : \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2+2y^2-3z^2}{18+32-75}=-\frac{100}{-25}=4\)
\(\Rightarrow x^2=36\Rightarrow x=\pm6;y^2=64\Rightarrow y=\pm8;z^2=100\Rightarrow z=\pm10\)