K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

C=\(\dfrac{x^6+27}{x^4-3x^3+6x^2-9x+9}=\dfrac{\left(x^2+3\right)\left(x^4-3x^2+9\right)}{\left(x^4+3x^2\right)-\left(3x^3+9x\right)+\left(3x^2+9\right)}=\dfrac{\left(x^2+3\right)\left(x^4+6x^2+9-9x^2\right)}{\left(x^2+3x\right)\left(x^2-3x+3\right)}=\dfrac{\left(x^2+3+3x\right)\left(x^2+3-3x\right)}{x^2+3-3x}=x^2+3x+3=\left(x^2+3x+\dfrac{9}{4}\right)-\dfrac{9}{4}+3=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=0\Leftrightarrow x=\dfrac{-3}{2}\)

Vậy Min C bằng \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

29 tháng 4 2017

Min C=\(\dfrac{3}{4}\Leftrightarrow x=\dfrac{-3}{2}\)

8 tháng 5 2017

Ta có: \(-x^2+2x-3=-x^2+2x-1-2=-\left(x-1\right)^2-2\le-2\) (1)

\(A=\dfrac{-5}{x^2-2x+3}=\dfrac{5}{-x^2+2x+3}\) (2)

Từ (1);(2)\(\Rightarrow A\ge-\dfrac{5}{2}\) Vậy min A=-5/2 khi x=1

2 tháng 3 2017

\(\left(n^2-1\right)^{2016}:n\)

Ta có \(n^2⋮n\)

\(\Rightarrow\left(n^2\right)^{2016}⋮n\)

\(\left(-1\right)^{2016}:n=a\left(dư1\right)\)

Vậy số dư khi chia \(\left(n^2-1\right)^{2016}\) cho \(n\) là 1.

26 tháng 9 2017

a) \(x^3-\dfrac{1}{9}x=0\)

\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)

\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)

b) \(x\left(x-3\right)+x-3=0\)

\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)

c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)

\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)

\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)

d) \(x^2\left(x-3\right)+27-9x=0\)

\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)

\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)

\(\Rightarrow x-3=0\Rightarrow x=3.\)

4 tháng 10 2017

\(\dfrac{2}{5}\)

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

29 tháng 8 2017

Tự làm đê em ơi cô Viết cho xong lên mạng chứ j

30 tháng 8 2017

thg kia m nói ai là em hả

29 tháng 10 2017

\(A=3x^2-12x+10\\ A=3x^2-12x+12-2\\ A=\left(3x^2-12x+12\right)-2\\ A=3\left(x^2-4x+4\right)-2\\ A=3\left(x^2-2\cdot x\cdot2+2^2\right)-2\\ A=3\left(x-2\right)^2-2\\ Do\left(x-2\right)^2\ge0\forall x\\ \Rightarrow3\left(x-2\right)^2\ge0\forall x\\ \Rightarrow A=3\left(x-2\right)^2-2\ge-2\forall x\\ \text{Dấu “=” xảy ra khi : }\\ \left(x-2\right)^2=0\\ \Leftrightarrow x-2=0\\ \Leftrightarrow x=2\\ \text{ Vậy }A_{\left(Min\right)}=-2\text{ khi }x=2\)

29 tháng 10 2017

A=3x2 - 12x + 10

A= (3x2- 2.3x.2+22)-22+10

A= (3x-2)2+6 \(\ge\) +6

Vậy min A = 6 . Dấu = xảy ra khi 3x -2 = 0

3x= 2

x= \(\dfrac{2}{3}\)

18 tháng 7 2017

Bài 1:

\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^2\left(x^2-1\right)\)

\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)

\(=x^6+27-27-27x^2-9x^4-x^6\)

\(=-9x^2\left(3-x^2\right)\)

18 tháng 7 2017

Bài 5:

\(A=x^2-2x+1\)

\(=\left(x^2-2x+1\right)-2\)

\(=\left(x-1\right)^2-2\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)

Vậy Min A = -2

Để A = -2 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x^2+4x+5\)

\(=\left(4x^2+4x+1\right)+4\)

\(=\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)

Vậy Min B = 4

Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

c, \(C=2x-x^2-4\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3

để C = -3 thì \(x-1=0\Rightarrow x=1\)

22 tháng 6 2017

a) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\) (1)

\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2-5x+6x-5\right)=16\)

\(\Leftrightarrow6x^2+21x-2x-7-\left(6x^2+x-5\right)=16\)

\(\Leftrightarrow6x^2+21x-2x-7-6x^2-x+5=16\)

\(\Leftrightarrow18x-2=16\)

\(\Leftrightarrow18x=16+2\)

\(\Leftrightarrow18x=18\)

\(\Leftrightarrow x=1\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{1\right\}\)

b) \(\left(10x+9\right)\cdot x-\left(5x-1\right)\left(2x+3\right)=8\) (2)

\(\Leftrightarrow10x^2+9x-\left(10x^2+15x-2x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-\left(10x^2+13x-3\right)=8\)

\(\Leftrightarrow10x^2+9x-10x^2-13x+3=8\)

\(\Leftrightarrow-4x+3=8\)

\(\Leftrightarrow-4x=8-3\)

\(\Leftrightarrow-4x=5\)

\(\Leftrightarrow x=-\dfrac{5}{4}\)

Vậy tập nghiệm phương trình (2) là \(S=\left\{-\dfrac{5}{4}\right\}\)

c) \(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\) (3)

\(\Leftrightarrow21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)

\(\Leftrightarrow42x-41=0\)

\(\Leftrightarrow42x=41\)

\(\Leftrightarrow x=\dfrac{41}{42}\)

Vậy tập nghiệm phương trình (3) là \(S=\left\{\dfrac{41}{42}\right\}\)

d) \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) (4)

\(\Leftrightarrow\left(x^2+x\right)\left(x+6\right)-x^3=5x\)

\(\Leftrightarrow x^3+6x^2+x^2+6x-x^3=5x\)

\(\Leftrightarrow7x^2+6x=5x\)

\(\Leftrightarrow7x^2+6x-5x=0\)

\(\Leftrightarrow7x^2+x=0\)

\(\Leftrightarrow x\left(7x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\7x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{7}\end{matrix}\right.\)

Vậy tập nghiệm phương trình (4) là \(S=\left\{-\dfrac{1}{7};0\right\}\)