K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2021

1) G/s 2 điểm đó là \(A\left(-1;y_1\right)\) và \(B\left(2;y_2\right)\)

\(\Rightarrow\hept{\begin{cases}y_1=-\left(-1\right)^2=-1\\y_2=-2^2=-4\end{cases}}\)

\(\Rightarrow A\left(-1;-1\right)\) và \(B\left(2;-4\right)\)

PT đường thẳng đó công thức là \(y=ax+b\Rightarrow\hept{\begin{cases}-a+b=-1\\2a+b=-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-1\\b=-2\end{cases}}\)

Vậy PT đường thẳng đó là \(y=-x-2\)

16 tháng 6 2021

2) 

a) Với m = -1 : \(x^2-2\cdot\left(-1-1\right)x--1-3=0\)

\(\Leftrightarrow x^2+4x-2=0\)

\(\Leftrightarrow\left(x+2\right)^2=6\Rightarrow x=-2\pm\sqrt{6}\)

b) \(\Delta^'=\left[-\left(m-1\right)\right]^2-1\cdot\left(-m-3\right)\)

\(=m^2-2m+1+m+3=m^2-m+4>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt với mọi m

Theo hệ thức viet: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1x_2=-m-3\end{cases}}\)

Ta có: \(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)=14\)

\(\Leftrightarrow4m^2-8m+4+2m+6-14=0\)

\(\Leftrightarrow4m^2-6m-4=0\)

\(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow m\left(2m+1\right)-2\left(2m+1\right)=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=2\\m=-\frac{1}{2}\end{cases}}\left(tm\right)\)

Vậy \(m\in\left\{2;-\frac{1}{2}\right\}\)

6 tháng 5 2016

trả lời hộ êm đi ạ

 

15 tháng 12 2016

ko đc đăng câu hỏi bằng hình ảnh

18 tháng 12 2016

Kệ Người ta nhiều chuyện

 

a: \(A=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)

\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)

\(=\sqrt{5}-\sqrt{5}+1=1\)

b: \(B=\sqrt{b-1}+\sqrt{b\left(b-1\right)}+\sqrt{b\left(b-1\right)}=\sqrt{b-1}\left(2\sqrt{b}+1\right)\)

10 tháng 5 2016

nhìu thế

15 tháng 5 2016

xài chuẩn hóa bđt tìm gtnn hoặc gtln đi

7 tháng 8 2017

\(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-3}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{\sqrt{2.6}-\sqrt{2.9}}{\sqrt{6}-3}=\dfrac{\sqrt{2}\left(\sqrt{6}-3\right)}{\sqrt{6}-3}=\sqrt{2}\)

\(\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2.3}-\sqrt{2.8}}{\sqrt{3}-\sqrt{2}}=\dfrac{2\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}=2\sqrt{2}\)

Vậy \(\dfrac{\sqrt{12}-\sqrt{18}}{\sqrt{6}-2}-\dfrac{2\sqrt{6}-4}{\sqrt{3}-\sqrt{2}}=\sqrt{2}-2\sqrt{2}=-\sqrt{2}\)

7 tháng 8 2017

\(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}=\sqrt{\left(2+\sqrt{7}\right)^2}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=2+\sqrt{7}+\sqrt{2}\)

Vậy \(\sqrt{11+4\sqrt{7}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\dfrac{3}{\sqrt{7}-2}=2+\sqrt{7}+\sqrt{2}-\dfrac{3}{\sqrt{7}-2}=\dfrac{\sqrt{2}\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=\sqrt{2}\)

5 tháng 5 2016

Mình không thể nào thấy được cái đề mà bạn chụp

5 tháng 5 2016

Ngược thế sao giúp được????

26 tháng 8 2016

1, \(\sqrt{\frac{-12}{x-5}}\) xác định khi \(\frac{-12}{x-5}\) \(\ge\) 0

→x-5<0→x<5

3. xác định khi x-2>0 →x>2

5.xác định khi \(\frac{4x-5}{x+2}\ge0\)và x\(\ne\)-2

\(\left[\begin{array}{nghiempt}\hept{\begin{cases}4x-5< 0\\x-3< 0\end{array}\right.\\\hept{\begin{cases}4x-5\ge0\\x-3>0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{5}{4}\\x< 3\end{array}\right.\\\hept{\begin{cases}x\ge\frac{5}{4}\\x>3\end{array}\right.\end{array}\right.}\)

 

28 tháng 8 2021
Chào đồng hương tui cx lớp 9nek

Bài tập Tất cả

28 tháng 8 2021

Trả lời:

a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)

\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)

\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)

\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)

c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)