\(\sqrt{7+\sqrt{ }2x}\)=3 +\(\sqrt{5...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

\(\sqrt{2x+1}-\sqrt{5-x}+x-6=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-3\right)+\left(1-\sqrt{5-x}\right)+x-4=0\)

\(\Leftrightarrow\frac{2\left(x-4\right)}{\sqrt{2x+1}+3}+\frac{x-4}{\sqrt{5-x}+1}+x-4=0\)

\(\Leftrightarrow\left(x-4\right)\left(\frac{2}{\sqrt{2x+1}+3}+\frac{1}{\sqrt{5-x}+1}+1\right)=0\)

\(\Leftrightarrow x=4\)

3 tháng 8 2018

Câu 1 =3/10

3 tháng 8 2018

\(1,\sqrt{\left(-0,3\right)^2}=\sqrt{0,09}=0,3\)

\(2,-\frac{1}{2}\sqrt{\left(0,3\right)^2}=-\frac{1}{2}.0,3=-0,15\)

\(3,\sqrt{a^{10}}=\sqrt{\left(a^5\right)^2}=a^5\left(a\ge0\right)\)

\(4,\sqrt{\left(2-x\right)^2}=\left|2-x\right|=2-x\left(x\le2\right)\)

\(5,\sqrt{x^2+2x+1}=\sqrt{\left(x+1\right)^2}=\left|x+1\right|\)

\(6,\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=\sqrt{2}-1\)(Vì \(1< \sqrt{2}\))

\(7,\sqrt{11+6\sqrt{2}}=\sqrt{9+6\sqrt{2}+2}=\sqrt{\left(3+\sqrt{2}\right)^2}=3+\sqrt{2}\)

\(8,\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

                                                                    \(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

                                                                    \(=\left(\sqrt{7}-1\right)-\left(\sqrt{7}+1\right)\)

                                                                      \(=-2\)

\(9,\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}\)

                                                                    \(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

                                                                    \(=\sqrt{5}+1+\sqrt{5}-1\)

                                                                    \(=2\sqrt{5}\)

19 tháng 9 2019

cái này có phải bình phương hai vế nên ko nhỉ?

19 tháng 9 2019

Câu 6 có sai ko?

3 tháng 9 2016

1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)

\(\Rightarrow DK:\left(x+1\right)^2\ge4\)

4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)

 \(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)

K biết đúng k.. Sai thôi

3 tháng 9 2016

1)    tc :     x+ 2x +3  =   x2 + 2x + 1 + 2   =   (x+1)2 +2 > 0 vs mọi x

     => căn thức có nghĩa vs mọi x

2)    tương tự câu 1:   x2 - 2x + 2  =  (x-1)2 +1   >    0   vs mọi x

        => căn thức có nghĩa vs mọi x

3)    \(\sqrt{x^2+2x-3}\)có nghĩa    <=>  x2+2x-3\(\ge0\)

                                                          <=> (x+1)2 - 4 \(\ge0\)

                                                        <=> (x+1)2 \(\ge4\)

                                                         <=> x+1 \(\ge2\)

                                                         <=> x \(\ge1\)

4) \(\sqrt{2x^2+5x+3}\)có nghĩa   <=>  2x2 +5x +3 \(\ge0\)

                                                      <=> 2x2 + 2x + 3x + 3 \(\ge0\)

                                                      <=> (2x+3)(x+1) \(\ge0\)

                                                       <=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\)  hoặc    \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)

                                                     <=>  \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\)        hoặc   \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)

                                                    <=>   \(\frac{-3}{2}\le x\le-1\)

8 tháng 8 2017

\(\Leftrightarrow\sqrt{4-\left(1-x\right)^2}=\sqrt{3}\)

\(\Leftrightarrow4-\left(1-x\right)^2=3\)

\(\Leftrightarrow4-\left(1-2x+x^2\right)-3=0\)

\(\Leftrightarrow4-1+2x-x^2-3=0\)

\(\Leftrightarrow-x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}}\)

vay x=0 ; x=2

\(\sqrt{3x^2-5=2}\left(x\ge\sqrt{\frac{5}{3}}\right)\)

\(\Leftrightarrow3x^2-5=4\)

\(\Leftrightarrow3x^2=9\Leftrightarrow x^2=3\Leftrightarrow\orbr{\begin{cases}x=\sqrt{3}\left(tm\right)\\x=-\sqrt{3}\left(kotm\right)\end{cases}}\)

vay \(x=\sqrt{3}\)

\(\sqrt{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}=2\left(x\ge49\right)\)

\(\Leftrightarrow\sqrt{x-49}=2\Leftrightarrow x^2-98x+2401=4\)

\(\Leftrightarrow x^2-98x+2397=0\Leftrightarrow x^2-47x-51x+2397\)\(\Leftrightarrow x\left(x-47\right)-51\left(x-47\right)\Leftrightarrow\left(x-47\right)\left(x-51\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x-51=0\\x-47=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=51\left(tm\right)\\x=47\left(kotm\right)\end{cases}}}\)

xay x=51

\(\sqrt{\frac{-6}{1+x}}=5\left(x< -1\right)\)

\(\Leftrightarrow\frac{36}{x^2+2x+1}=25\Leftrightarrow25x^2+50x+25=36\)

\(\Leftrightarrow25x^2+50x-11=0\Leftrightarrow25x^2-5x+55x-11\)

\(\Leftrightarrow5x\left(5x-1\right)+11\left(5x-1\right)\Leftrightarrow\left(5x-1\right)\left(5x+11\right)\)\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\5x+11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\left(kotm\right)\\x=\frac{-11}{5}\left(tm\right)\end{cases}}}\)

vay \(x=\frac{-11}{5}\)

nhung cau nay binh phuong len la xong 

y 3 xem lai de bai 

y 4,7 ko biet lam

24 tháng 10 2018

trả lời nhanh hộ t nhé cc :)

24 tháng 10 2018

\(\frac{5\left(\sqrt{6}-1\right)\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+\sqrt{\left(\sqrt{2}\right)^2-2\sqrt{2}+1}\)

\(=\frac{5\left(\sqrt{6}-1\right)^2}{5}-\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{1}+\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(=\left(\sqrt{6}-1\right)^2-\left(\sqrt{2}-\sqrt{3}\right)^2+\left(\sqrt{2}-1\right)\)

\(=6-2\sqrt{6}+1-2+2\sqrt{6}-3+\sqrt{2}-1=\sqrt{2}\)

\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)

\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=3-\sqrt{5}+\sqrt{5}-1=2\)

\(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{5}\)

\(=\sqrt{5}+2-\sqrt{5}=2\)

Chúc học tốt!!!!!!!!!!!!!

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được