Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với ạ,mai mình phải nộp rồi nhưng kô biết làm .Mong mn giúp đỡ!!!
a)\(pt\Leftrightarrow\sqrt{x^2-2x+2}+\sqrt{3x^2-6x+4}-2=0\)
\(\Leftrightarrow\sqrt{x^2-2x+2}-1+\sqrt{3x^2-6x+4}-1=0\)
\(\Leftrightarrow\frac{x^2-2x+2-1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+4-1}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\frac{x^2-2x+1}{\sqrt{x^2-2x+2}+1}+\frac{3x^2-6x+3}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{\sqrt{x^2-2x+2}+1}+\frac{3\left(x-1\right)^2}{\sqrt{3x^2-6x+4}+1}=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}\right)=0\)
Dễ thấy: \(\frac{1}{\sqrt{x^2-2x+2}+1}+\frac{3}{\sqrt{3x^2-6x+4}+1}>0\) (loại)
Nên x-1=0 suy ra x=1
b)\(pt\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}+x^2+2x-5=0\)
\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+21}-4+x^2+2x+1=0\)
\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+21-16}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)
Dễ thấY: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1>0\) (loại luôn)
Nên x+1=0 suy ra x=-1
\(a.\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}\sqrt{2+\sqrt{3}}.\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{4+2\sqrt{3}}=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{\left(\sqrt{3+1}\right)^2}\)
\(=\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)^2=\left(2-\sqrt{3}\right)\left(4+2\sqrt{3}\right)\)
\(=2\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=2\left(2^2-\sqrt{3}^2\right)=2\)
\(1.A=x-3\sqrt{x}+5=\left(\sqrt{x}-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\) Điều kiện: \(x\ge0\)
\(\Rightarrow MinA=\frac{11}{4}\)
Dấu "=" xảy ra khi \(\sqrt{x}=\frac{3}{2}\Leftrightarrow x=\frac{9}{4}\left(TM\right)\)
\(2.B=\left(x-2015\right)-\sqrt{x-2015}+2015=\left(\sqrt{x-2015}-\frac{1}{2}\right)^2+2015-\frac{1}{4}\) điều kiện: \(x\ge2015\)
\(B\ge2015-\frac{1}{4}=\frac{8059}{8060}\)
Dấu "=" xảy ra khi \(\sqrt{x-2015}-\frac{1}{2}=0\Leftrightarrow x-2015=\frac{1}{2^2}\Leftrightarrow x=\frac{8061}{8060}\left(TM\right)\)
\(a,\sqrt{\frac{x-2}{25}}+2\sqrt{4x-8}=2\sqrt{x-2}+11\)
\(ĐKXĐ:x\ge2\)
\(\frac{1}{5}\sqrt{x-2}+4\sqrt{x-2}-2\sqrt{x-2}=11\)
\(\frac{11}{5}\sqrt{x-2}=11\)
\(\sqrt{x-2}=5\)
\(x-2=25\)
\(x=27\left(TM\right)\)
\(b,\sqrt{x^2-2x+1}=3x-2\)
\(ĐKXĐ:x\ge\frac{3}{2}\)
\(\sqrt{\left(x-1\right)^2}=3x-2\)
\(\left|x-1\right|=3x-2\)
\(x-1=3x-2\)
\(x=\frac{1}{2}\left(KTM\right)\)vậy pt vô nghiệm
b, đk : x >= 2/3
|x - 1| = 3x - 2
=> x - 1 = 3x - 2 hoặc x - 1 = 2 - 3x
=> 2x = 1 hoặc 4x = 3
=> x = 1/2 (ktm) hoặc x = 3/4 (tm)
\(\sqrt{x^2-x-6}=\sqrt{x-3}\)
Tự xét điều kiện nha
\(\Leftrightarrow x^2-x-6=x-3\)
\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
\(\sqrt{x^2-x}=\sqrt{3x-5}\)
\(\Leftrightarrow x^2-x=3x-5\)
\(\Leftrightarrow x^2-4x+5=0\)
vô nghiệm
\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)
Mà ta có điều kiện là \(0\le x\le1\)
=> E \(\ge1\)
Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)
Đạt GTNN là 1 khi x = 1
ĐK: \(\frac{2}{3}\le x\le\frac{3}{2}\)
(Vế phải và vế trái đều không âm nên có thể bình phương 2 vế theo một phương trình tương đương)
pt <=> \(x^2\left(3x-2\right)+\left(3-2x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=x^3+x^2+x+1\)
<=> \(3x^3-2x^2+3-2x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}-x^3-x^2-x-1=0\)
<=> \(2x^3-3x^2+2-3x+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)
<=> \(x^2\left(2x-3\right)+\left(2-3x\right)+2\sqrt{x^2\left(3x-2\right)\left(3-2x\right)}=0\)
<=> \(-x^2\left(3-2x\right)-\left(3x-2\right)+2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)
<=> \(x^2\left(3-2x\right)+\left(3x-2\right)-2\sqrt{\left(3x-2\right).x^2\left(3-2x\right)}=0\)
<=> \(\left(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}\right)^2=0\)
<=> \(\sqrt{x^2\left(3-2x\right)}-\sqrt{3x-2}=0\)
<=> \(\sqrt{x^2\left(3-2x\right)}=\sqrt{3x-2}\)
<=> \(x^2\left(3-2x\right)=3x-2\)
<=> \(-2x^3+3x^2-3x+2=0\)
<=> \(\left(x-1\right)\left(-2x^2+x-2\right)=0\)
<=> x=1 (tm)
ĐKXĐ \(x\ge0\)
Pt
<=> \(\sqrt{x+3}\left(\sqrt{x}+1\right)=x+\sqrt{x}+2\)
Đặt \(\sqrt{x+3}=a,\sqrt{x}+1=b\left(a\ge0,b\ge1\right)\)
=> \(a^2+b^2=2x+2\sqrt{x}+4\)
Khi đó PT
<=> \(ab=\frac{a^2+b^2}{2}\)=> \(a=b\)
= >\(\sqrt{x+3}=\sqrt{x}+1\)
<=> \(2\sqrt{x}=2\)=>\(x=1\)(tm ĐKXĐ)
Vậy x=1