K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACK

b: Xét ΔKEB vuông tại K và ΔHEC vuông tại H có

\(\widehat{KEB}=\widehat{HEC}\)

DO đó: ΔKEB\(\sim\)ΔHEC

Suy ra: EK/EH=EB/EC

hay \(\dfrac{EK}{EB}=\dfrac{EH}{EC}\)

c: Xét ΔAKH và ΔACB có 

AK/AC=AH/AB

góc A chung

Do đó: ΔAKH\(\sim\)ΔACB

Suy ra: \(\widehat{AKH}=\widehat{ACB}\)

2 tháng 4 2022

Em cảm ơn ạ

a: Xét ΔABH vuông tại H và ΔACK vuông tại K có

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔACK

b: Xét ΔKEB vuông tại K và ΔHEC vuông tại H có

\(\widehat{KEB}=\widehat{HEC}\)

DO đó: ΔKEB\(\sim\)ΔHEC

Suy ra: EK/EH=EB/EC

hay \(\dfrac{EK}{EB}=\dfrac{EH}{EC}\)

c: Xét ΔAKH và ΔACB có 

AK/AC=AH/AB

góc A chung

Do đó: ΔAKH\(\sim\)ΔACB

Suy ra: \(\widehat{AKH}=\widehat{ACB}\)

2 tháng 4 2022

Em cảm ơn ạ

10 tháng 7 2019

ai đó giúp mình giải bài này với

10 tháng 7 2019

a

Xét  \(\Delta EBH\) và \(\Delta DHC\) có:

\(\widehat{EHB}=\widehat{DHC}\left(đ.đ\right)\)

\(\widehat{E}=\widehat{D}=90^0\)

\(\Rightarrow\Delta EBH~\Delta DHC\left(g.g\right)\)

b

\(\frac{S_{ABF}}{S_{ACF}}=\frac{\frac{AF\cdot BF}{2}}{\frac{AF\cdot CF}{2}}=\frac{BF}{CF}\)

Tuong tu ta co:

\(\frac{S_{ABD}}{S_{CBD}}=\frac{DA}{DC}\)

\(\frac{S_{BCE}}{S_{ACE}}=\frac{EB}{EA}\)

Nhan ve theo ve ta co dpcm

29 tháng 7 2018

a, \(BH\perp AD\left(gt\right)\Rightarrow\widehat{BHA}=\widehat{BHD}=90^0\)

\(CK\perp AD\left(gt\right)\Rightarrow\widehat{AKC}=90^0\)

Xét \(\Delta BHD\)và \(\Delta CKD\) có: 

                         \(\widehat{BHD}=\widehat{CKD}=90^0\)

                          \(\widehat{BDH}=\widehat{CDK}\) (đối đỉnh)

Do đó: \(\Delta BHD\infty\Delta CKD\left(g.g\right)\)

b, Xét \(\Delta ABH\) và \(\Delta ACK\) có:

                     \(\widehat{BAH}=\widehat{CAK}\) (vì AD là tia p/g của góc BAC)

                       \(\widehat{AHB}=\widehat{AKC}=90^0\)

Do đó: \(\Delta ABH\infty\Delta ACK\left(g.g\right)\)

Suy ra: \(\frac{AB}{AH}=\frac{AC}{AK}\) hay  \(AB.AK=AC.AH\)

C, \(\Delta ABH\infty\Delta ACK\left(cmt\right)\Rightarrow\frac{BH}{CK}=\frac{AB}{AC}\left(1\right)\) 

\(\Delta BHD=\Delta CKD\left(cmt\right)\Rightarrow\frac{DH}{DK}=\frac{BH}{CK}\left(2\right)\)

Từ (1) và (2), ta được: \(\frac{DH}{DK}=\frac{BH}{CK}=\frac{AB}{AC}\)

d, Gọi giao điểm giữa FM và BH là O và giao điểm giữa FM và CK là I.

Bạn chứng minh được tam giác BOF tại O và tam giác CIE vuông tại I

\(\Delta BOM=\Delta CIM\left(ch.gn\right)\Rightarrow BO=CI\)(2 cạnh tương ứng)

\(AD//FM\left(gt\right)\Rightarrow\hept{\begin{cases}\widehat{BAD}=\widehat{F}\\\widehat{DAC}=\widehat{IEC}\end{cases}}\)(đồng vị)

Suy ra: \(\widehat{F}=\widehat{IEC}\)

Mà \(\hept{\begin{cases}\widehat{F}+\widehat{FBO}=90^0\\\widehat{IEC}+\widehat{ICE}=90^0\end{cases}}\)

Nên \(\widehat{FBO}=\widehat{ICE}\)

Chứng minh được \(\Delta FBO=\Delta ECI\left(g.c.g\right)\Rightarrow BF=CE\)(2 cạnh tương ứng)

Chúc bạn học tốt.

31 tháng 3 2019

A B C D E 6 H

a) BC = \(\sqrt{AB^2+AC^2}\)\(\sqrt{6^2+8^2}\)\(\sqrt{100}\)= 10 (theo định lí Pythagoras)

\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)\(\frac{CD}{BC}\)\(\frac{AD}{DC}\)\(\frac{AB}{BC}\)\(\frac{6}{10}\)\(\frac{3}{5}\).

b) Ta có : \(\widehat{ABE}\)\(\widehat{EBC}\)(BD là phân giác)

=> \(\Delta ABD\)\(\Delta EBC\)(gg)

=> \(\frac{BD}{BC}\)\(\frac{AD}{EC}\)<=>  BD.EC = AD.BC (đpcm).

c) Ta có : \(\Delta CHE\)\(\Delta CEB\)( 2 tam giác vuông có chung góc C )

=> \(\frac{CH}{CE}\)\(\frac{CE}{CB}\)<=>  CH.CB = CE2                                                     (1)

                \(\Delta CDE\)\(\Delta BDA\)(gg  (2 góc đối đỉnh))

                 \(\Delta BDA~\Delta BCE\) (câu b))

=> \(\Delta CDE~\Delta BCE\)

=> \(\frac{CE}{BE}\)\(\frac{DE}{CE}\)<=> BE.DE = CE2                                                        (2)

Từ (1) và (2) => CH.CB = ED.EB (đpcm).

29 tháng 4 2017

tự làm nhé

bài đó dễ quá nên mik ko biết làm

29 tháng 4 2017

bạn nói dễ mà sao ko biết làm minh chuong