Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-2x+3-4x\left(x-5\right)=7x-3\)
\(\Rightarrow4x^2-2x+3-4x^2+20x=7x-5\)
\(\Rightarrow11x=-8\)
\(\Rightarrow x=\frac{-8}{11}\)
Ta có : 4x2 - 2x + 3 -4x(x - 5) = 7x - 3
=> 4x2 - 2x + 3 - 4x2 + 20x = 7x - 3
=> 18x + 3 = 7x - 3
=> 18x - 7x = -3 - 3
=> 11x = -6
=> x = -6/11
a) \(\left(x+2\right)^2=4\left(2x-1\right)^2\)
\(\left(x+2\right)^2-4\left(2x-1\right)^2=0\)
\(\left(x+2\right)^2-\left[2\left(2x-1\right)\right]^2=0\)
\(\left(x+2\right)^2-\left(4x-2\right)^2=0\)
\(\left(x+2-4x+2\right)\left(x+2+4x-2\right)=0\)
\(6x\left(-3x+4\right)=0\)
\(\Rightarrow6x=0\) hoặc \(-3x+4=0\)
*) \(6x=0\)
\(x=0\)
*) \(-3x+4=0\)
\(3x=4\)
\(x=\dfrac{4}{3}\)
Vậy \(x=0;x=\dfrac{4}{3}\)
b) \(4x\left(x-2019\right)-x+2019=0\)
\(4x\left(x-2019\right)-\left(x-2019\right)=0\)
\(\left(x-2019\right)\left(4x-1\right)=0\)
\(\Rightarrow x-2019=0\) hoặc \(4x-1=0\)
*) \(x-2019=0\)
\(x=2019\)
*) \(4x-1=0\)
\(4x=1\)
\(x=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4};x=2019\)
(2x+3)(4x2-6x+9)-2(4x3-1)
=8x3-12x2+18x+12x2-18x+27-8x3+2
=8x3-8x3-12x2+12x2+18x-18x+2+27
=29
câu vừa nãy mình làm sai nha
nếu x = 1 thì phép tính đó âm mất rùi
nên là bài này không có kết quả
Vì x^4= x.x.x.x
4x+3=x.4+3
=>x^4>4x+3
=>x^4-4x+3>0
=>x^4-4x+3 không âm với mọi x
=> (2x-1)=(x-3)(4x-3)/(4x-3)
=> 2x-1=x-3
=> 2x-x=4
=> x=4
Bài làm
( 4x - 3 )( 2x - 1 ) = ( x - 3 )( 4x - 3 )
<=> ( 4x - 3 )( 2x - 1 ) - ( x - 3 )( 4x - 3 ) = 0
<=> ( 4x - 3 )( 2x - 1 - x + 3 ) = 0
<=> ( 4x - 3 )( x + 2 ) = 0
<=> 4x - 3 = 0 và x + 2 = 0
<=> x = 3/4 và x= -2
Vậy S={3/4; -2 }
\(4x^2-4x+3=0\)
\(\Rightarrow4x^2-4x+1+2=0\)
\(\Rightarrow\left(2x-1\right)^2+2=0\)
Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+2\ge2\)
\(\Rightarrow\left(2x-1\right)^2=0\)( vô lý )
\(\Rightarrow x\in\varnothing\)
x3 _ x2 _ 4x - 4 = 0
x mũ 2(x+1)- 4(x+1)=0
(x mũ 2 - 4) (x+1)=0
(x+2) (x-2) (x+1) =0
suy ra (x+2)=0
(x-2)=0
(x+1)=0
vậy x=-2
x=2
x= -1
good luck!
Sửa đề : \(x^3-x^2-4x+4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)
\(8x^3+4x^2-4xy+y^2-y^3=\left(8x^3-y^3\right)+\left(4x^2-4xy+y^2\right)=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(4x^2+2xy+y^2+2x-y\right)\)
`@` `\text {Ans}`
`\downarrow`
`(8x-3)(3x+2)-(4x+7)(x+4)=(2x+1)(5x-1)-33`
`\Leftrightarrow 8x(3x+2) -3(3x+2) - 4x(x+4) + 7(x+4) = 2x(5x-1) + 5x-1 - 33`
`\Leftrightarrow 24x^2 + 16x - 9x - 6 - 4x^2 - 16x - 7x - 28 = 10x^2 - 2x + 5x - 1 - 33`
`\Leftrightarrow 20x^2 -16x - 34 = 10x^2 + 3x - 34`
`\Leftrightarrow 20x^2 - 16x - 34 - 10x^2 - 3x + 34 = 0`
`\Leftrightarrow 10x^2 - 19x = 0`
`\Leftrightarrow x(10x - 19)=0`
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x-19=0\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\10x=19\end{matrix}\right.\)
`\Leftrightarrow `\(\left[{}\begin{matrix}x=0\\x=\dfrac{19}{10}\end{matrix}\right.\)
Vậy, `x={0; 19/10}.`