Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như cần sửa thành \(\ge\)mới đúng
\(2x^2+xy+2y^2=\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}\left(x^2+y^2\right)\ge\frac{1}{2}\left(x+y\right)^2+\frac{3}{2}.\frac{1}{2}\left(x+y\right)^2=\frac{5}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\frac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Vậy ta có đpcm.
Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ
sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)
giải
Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)
\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)
Áp dụng bđt bunhiacopxki ta có:
\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)
Mà \(x,y,z\)nguyên dương
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)
Lấy (1) + (2) ta được:
\(M\ge2+2+2+\frac{1}{3}\)
\(\Rightarrow M\ge\frac{19}{3}\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
Bạn tham khảo sol ở đây nhé !
IMO ShortList 1998, number theory problem 1
Hơi bị gắt đó,IMO 1998 ( mặc dù đề lệch 1 tẹo so với IMO )
Rảnh thì tớ sẽ sol cho các bạn xem,cậu vào TKHĐ của tớ là thấy link nhé !!!
Đặt \(x=a;\frac{1}{y}=b\Rightarrow a,b>0;a^2+b^2=1\). Quy về tìm Min \(A=ab+\frac{1}{ab}\)
Ta có: \(A=\left(4ab+\frac{1}{ab}\right)-3ab\ge2\sqrt{4ab.\frac{1}{ab}}-\frac{3}{2}\left(a^2+b^2\right)=4-\frac{3}{2}=\frac{5}{2}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}4ab=\frac{1}{ab}\\a=b\end{cases}}\Leftrightarrow\hept{\begin{cases}2ab=1\\a=b\end{cases}}\Rightarrow a=b=\frac{1}{\sqrt{2}}\) (thỏa mãn \(a^2+b^2=1\))
\(\Rightarrow x=\frac{1}{\sqrt{2}};y=\sqrt{2}\)
Vậy...
\(\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
Dấu = xảy ra khi x =y = 1/2
chứng minh sao lại ra được điều này bạn?
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{\left(1+1\right)^2}{\left(x+y\right)^2}\)
Sai đề rồi nha bạn! Điều kiện: \(x^2+y^3\ge x^3+y^4\)
Sử dụng bất đẳng thức \(C-S,\) ta có:
\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)
\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)
\(\Rightarrow\) \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\) \(\Leftrightarrow\) \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)
Lại có: \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)
\(\Rightarrow\) \(x^2+y^2\le x+y\) \(\left(2\right)\)
Mặt khác, từ \(\left(2\right)\) với lưu ý rằng \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và \(x,y\in R^+\) , ta thu được:
\(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\) \(x^2+y^2\le2\) \(\left(3\right)\)
nên do đó, \(\left(i\right)\) suy ra \(x+y\le\sqrt{2.2}=2\) \(\left(4\right)\)
Từ \(\left(1\right);\left(2\right);\left(3\right)\) và \(\left(4\right)\) ta có đpcm
Vì \(x+y+z=2\)
Ta có \(\sqrt{2x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x^2+xy\right)+\left(xz+yz\right)}=\sqrt{\left(x+y\right)\left(x+z\right)}\)
\(\le\frac{x+y+x+z}{2}=\frac{2x+y+z}{2}\)
Tương tự \(\sqrt{2y+zx}\le\frac{x+2y+z}{2}\) và \(\sqrt{2z+xy}\le\frac{x+y+2z}{2}\)
Do đó \(P\le\frac{2x+y+z}{2}+\frac{x+2y+z}{2}+\frac{x+y+2z}{2}=\frac{4\left(x+y+z\right)}{2}=\frac{4.2}{2}=4\)
Vậy \(P\le4\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x+y=x+z\\y+x=y+z\\z+x=z+y\end{cases}}\) và x+y+z=2 \(\Leftrightarrow\) \(x=y=z=\frac{2}{3}\)
\(4=\frac{x}{2}+y+\frac{x}{2}+z\ge\sqrt{2xy}+\sqrt{xz}\)
đặt căn 2xy là a,,,,,,căn 2xz là b ....Ta có \(a+b\le4\) và cần CM :\(\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)^2\ge\frac{1}{2}\left(\frac{4}{a+b}\right)^2\ge\frac{1}{2}\Rightarrowđpcm\)
Câu hỏi của Lê Thanh Thưởng - Toán lớp 9 - Học toán với OnlineMath
bài này dòng thứ 3 mình gõ nhầm nhé sửa thành "Từ x+y+z=4"