Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{-5x}{x^2-3x+\frac{9}{4}+\frac{31}{4}}\)= \(\frac{-5x}{\left(x-\frac{3}{2}\right)^2+\frac{31}{4}}\)Vì \(\left(x-\frac{3}{2}\right)^2\)>0 hoặc =0 , khi công thêm \(\frac{31}{4}\)thì Mẫu số luôn lớ hơn hoặc bằng 0. Mà -5x luôn bé hơn hoặc bằng 0
Vì vậy biểu thức A luôn âm
Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)
\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)
Vậy \(x=y=\frac{1}{2}\)
\(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
\(\Leftrightarrow\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\) [ Nhân ( x - 1) với ( x - 6 ) và ( x - 3 ) với ( x - 4 ) ]
Đặt \(x^2-7x+9=y\) ta được :
\(\left(x^2-7x+6\right)\left(x^2-7x+12\right)+9\ge0\)
\(\Leftrightarrow\left(y-3\right)\left(y+3\right)+9\ge0\)
\(\Leftrightarrow y^2-9+9\ge0\)
\(\Leftrightarrow y^2\ge0\)( điều hiển nhiên ) \(\Rightarrow dpcm\)
tk cho mk nka !!!
\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)
\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)
Bài 2 đề bn viết thiếu đấu + đó
Ta có M=x2+4xy+5y2-2y+3
=(x2+4xy+4y2)+(y2-2y+1)+2
=(x+2y)2 +(y-1)2+2
Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)
=> đpcm
\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)